An optimized algorithm for multiscale wideband deconvolution of radio astronomical images

被引:225
|
作者
Offringa, A. R. [1 ]
Smirnov, O. [2 ,3 ]
机构
[1] Netherlands Inst Radio Astron ASTRON, POB 2, NL-7990 AA Dwingeloo, Netherlands
[2] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa
[3] SKA South Africa, 3rd Floor,Pk,Pk Rd, ZA-7405 Pinelands, South Africa
基金
新加坡国家研究基金会; 欧洲研究理事会;
关键词
instrumentation: interferometers; methods: observational; techniques: interferometric; radio continuum: general; INTERFEROMETRY; IMPLEMENTATION; CALIBRATION;
D O I
10.1093/mnras/stx1547
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We describe a new multiscale deconvolution algorithm that can also be used in a multifrequency mode. The algorithm only affects the minor clean loop. In single-frequency mode, the minor loop of our improved multiscale algorithm is over an order of magnitude faster than the CASA multiscale algorithm, and produces results of similar quality. For multifrequency deconvolution, a technique named joined-channel cleaning is used. In this mode, the minor loop of our algorithm is two to three orders of magnitude faster than CASA MSMFS. We extend the multiscale mode with automated scale-dependent masking, which allows structures to be cleaned below the noise. We describe a new scale-bias function for use in multiscale cleaning. We test a second deconvolution method that is a variant of the MORESANE deconvolution technique, and uses a convex optimization technique with isotropic undecimated wavelets as dictionary. On simple well-calibrated data, the convex optimization algorithm produces visually more representative models. On complex or imperfect data, the convex optimization algorithm has stability issues.
引用
收藏
页码:301 / 316
页数:16
相关论文
共 50 条
  • [41] Multiscale modeling algorithm for core images
    Li, Zhengji
    He, Xiaohai
    Teng, Qizhi
    Chen, Honggang
    PHYSICAL REVIEW E, 2020, 101 (05)
  • [42] Optimized Bases Compressive Spectrum Sensing for Wideband Cognitive Radio
    Farrag, Mohammed
    El-Khamy, Mostafa
    El-Sharkawy, Mohamed
    2011 IEEE 22ND INTERNATIONAL SYMPOSIUM ON PERSONAL INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2011, : 305 - 309
  • [43] A robust algorithm for the pointing refinement and registration of astronomical images
    Masci, FJ
    Makovoz, D
    Moshir, M
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2004, 116 (823) : 842 - 858
  • [44] Spatially adaptive iterative algorithm for the restoration of astronomical images
    Katsaggelos, AK
    Kang, MG
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 1995, 6 (04) : 305 - 313
  • [45] Deconvolution of astronomical images obtained from ground-based telescopes with adaptive optics
    Fusco, T
    Mugnier, L
    Conan, JM
    Marchis, F
    Chauvin, G
    Rousset, G
    Lagrange, AM
    Mouillet, D
    Roddier, F
    ADAPTIVE OPTICAL SYSTEM TECHNOLOGIES II, PTS 1 AND 2, 2003, 4839 : 1065 - 1075
  • [46] Multiframe blind deconvolution applied to diverse shift-and-add images of an astronomical object
    Susumu Kuwamura
    Yasuyuki Azuma
    Noriaki Miura
    Fumiaki Tsumuraya
    Makoto Sakamoto
    Naoshi Baba
    Optical Review, 2014, 21 : 9 - 16
  • [47] Multiframe blind deconvolution applied to diverse shift-and-add images of an astronomical object
    Kuwamura, Susumu
    Azuma, Yasuyuki
    Miura, Noriaki
    Tsumuraya, Fumiaki
    Sakamoto, Makoto
    Baba, Naoshi
    OPTICAL REVIEW, 2014, 21 (01) : 9 - 16
  • [48] SNowPAc: a multiscale cubic B-spline wavelet compressor for astronomical images
    Pulido, Jesus
    Zheng, Caixia
    Thorman, Paul
    Hamann, Bernd
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (02) : 2545 - 2555
  • [49] ANDRIL - Maximum likelihood algorithm for deconvolution of SXT images
    Sylwester, J
    Sylwester, B
    ACTA ASTRONOMICA, 1998, 48 (03): : 519 - 545
  • [50] Fast relative newton algorithm for blind deconvolution of images
    Bronstein, AM
    Zibulevsky, M
    Zeevi, YY
    Bronstein, MM
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 1233 - 1236