ON MASS CONCENTRATION FOR THE CRITICAL GENERALIZED KORTEWEG-DE VRIES EQUATION

被引:4
|
作者
Pigott, B. [1 ]
机构
[1] Wake Forest Univ, Dept Math, Winston Salem, NC 27109 USA
关键词
Korteweg-de Vries (KdV) equation; critical norm; mass concentration; blow-up; NONLINEAR SCHRODINGER-EQUATION; BLOW-UP SOLUTIONS; WELL-POSEDNESS; KDV; DYNAMICS;
D O I
10.1017/S001309151500019X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that blow-up solutions of the critical generalized Korteweg-de Vries equation in H-1(R) concentrate at least the mass of the ground state at the blow-up time. The I-method is used to prove a slightly weaker result in H-s(R) with 16/17 < s < 1. Under an assumption on the precise blow-up rate, we are able to use similar arguments to prove a more precise analogue of the H-1(R) concentration result over the same range of s.
引用
收藏
页码:519 / 532
页数:14
相关论文
共 50 条
  • [1] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [2] ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION
    KENIG, CE
    PONCE, G
    VEGA, L
    DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) : 585 - 610
  • [3] Instability of solitons for the critical generalized Korteweg-de Vries equation
    Martel, Y
    Merle, F
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (01) : 74 - 123
  • [4] A Liouville theorem for the critical generalized Korteweg-de Vries equation
    Martel, Y
    Merle, F
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2000, 79 (04): : 339 - 425
  • [5] Bifurcations in the Generalized Korteweg-de Vries Equation
    Kashchenko, S. A.
    Preobrazhenskaya, M. M.
    RUSSIAN MATHEMATICS, 2018, 62 (02) : 49 - 61
  • [6] On the Generalized Nonlinear Korteweg-De Vries Equation
    Gladkov, S. O.
    TECHNICAL PHYSICS, 2024, : 2336 - 2338
  • [7] SOLUTION OF A GENERALIZED KORTEWEG-DE VRIES EQUATION
    TAGARE, SG
    CHAKRABARTI, A
    PHYSICS OF FLUIDS, 1974, 17 (06) : 1331 - 1332
  • [8] Generalized inversion of the Korteweg-de Vries equation
    Muccino, JC
    Bennett, AF
    DYNAMICS OF ATMOSPHERES AND OCEANS, 2002, 35 (03) : 227 - 263
  • [9] Finite point blowup for the critical generalized Korteweg-de Vries equation
    Martel, Yvan
    Pilod, Didier
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2024, 25 (01) : 371 - 425
  • [10] Singularities in the Boussinesq equation and in the generalized Korteweg-de Vries equation
    Yang, L
    Yang, KQ
    PHYSICAL REVIEW E, 2001, 63 (03):