Multi-label Classification of Abnormalities in 12-Lead ECG Using Deep Learning

被引:1
|
作者
Ran, Ao [1 ]
Ruan, Dongsheng [2 ]
Zheng, Yuan [3 ]
Liu, Huafeng [1 ]
机构
[1] Zhejiang Univ, Coll Opt Engn, Hangzhou, Peoples R China
[2] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou, Peoples R China
[3] Zhejiang Univ, Coll Aeronaut & Astronaut, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.22489/CinC.2020.139
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Identifying arrhythmias from electrocardiogram(ECG) signals remains an intractable challenge. This study aims to develop an effective and non-invasive approach to realize the recognition of arrhythmias based on 12-lead ECG for the PhysioNet/Computing in Cardiology Challenge2020. To this end, we propose a deep learning-based diagnosis approach, called EASTNet which captures the characteristics of cardiac abnormalities and correlation between heartbeats sampled randomly from 12-lead ECG records by a 34-layer 1D-deep squeeze-and-excitation network. Experimenting in the multi-label arrhythmia classification task, our team, EASTBLUE, was unable to rank and score in the hidden validation and test sets, but achieved diagnostic performance with 0.7030 +/- 0.0090 metric score using 5-fold cross-validation on the training set. We also investigate the effect of beat sampling on diagnostic performance, and find that the beat sampling plays a role in data augmentation that effectively alleviates network overfitting. These results demonstrate that our approach has good potential application prospects in clinical practice, especially in the auxiliary diagnosis of abnormalities.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Automatic diagnosis of the 12-lead ECG using a deep neural network
    Ribeiro, Antonio H.
    Ribeiro, Manoel Horta
    Paixao, Gabriela M. M.
    Oliveira, Derick M.
    Gomes, Paulo R.
    Canazart, Jessica A.
    Ferreira, Milton P. S.
    Andersson, Carl R.
    Macfarlane, Peter W.
    Wagner, Meira, Jr.
    Schon, Thomas B.
    Ribeiro, Antonio Luiz P.
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [42] Automatic diagnosis of the 12-lead ECG using a deep neural network
    Antônio H. Ribeiro
    Manoel Horta Ribeiro
    Gabriela M. M. Paixão
    Derick M. Oliveira
    Paulo R. Gomes
    Jéssica A. Canazart
    Milton P. S. Ferreira
    Carl R. Andersson
    Peter W. Macfarlane
    Wagner Meira Jr.
    Thomas B. Schön
    Antonio Luiz P. Ribeiro
    Nature Communications, 11
  • [43] Learning a Deep ConvNet for Multi-label Classification with Partial Labels
    Durand, Thibaut
    Mehrasa, Nazanin
    Mori, Greg
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 647 - 657
  • [44] Cardiac Pathologies Detection and Classification in 12-lead ECG
    Smisek, Radovan
    Nemcova, Andrea
    Marsanova, Lucie
    Smital, Lukas
    Vitek, Martin
    Kozumplik, Jiri
    2020 COMPUTING IN CARDIOLOGY, 2020,
  • [45] DeepBE: Learning Deep Binary Encoding for Multi-Label Classification
    Li, Chenghua
    Kang, Qi
    Ge, Guojing
    Song, Qiang
    Lu, Hanqing
    Cheng, Jian
    PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 744 - 751
  • [46] A Survey of Multi-label Text Classification Based on Deep Learning
    Chen, Xiaolong
    Cheng, Jieren
    Liu, Jingxin
    Xu, Wenghang
    Hua, Shuai
    Tang, Zhu
    Sheng, Victor S.
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 443 - 456
  • [47] Distributed Deep Learning for Multi-Label Chest Radiography Classification
    Monshi, Maram Mahmoud A.
    Poon, Josiah
    Chung, Vera
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 949 - 956
  • [48] Multi-Label Arabic Text Classification Based On Deep Learning
    Alsukhni, Batool
    2021 12TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION SYSTEMS (ICICS), 2021, : 475 - 477
  • [49] Deep Semantic Dictionary Learning for Multi-label Image Classification
    Zhou, Fengtao
    Huang, Sheng
    Xing, Yun
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 3572 - 3580
  • [50] Multi-label classification of frog species via deep learning
    Xie, Jie
    Zeng, Rui
    Xu, Changliang
    Zhang, Jinglan
    Roe, Paul
    2017 IEEE 13TH INTERNATIONAL CONFERENCE ON E-SCIENCE (E-SCIENCE), 2017, : 187 - 193