Dynamics of an axially moving Bernoulli-Euler beam: Spectral element modeling and analysis

被引:13
|
作者
Oh, H
Lee, U
Park, DH
机构
[1] Inha Univ, Dept Mech Engn, Inchon 402751, South Korea
[2] Inha Univ, Dept Ind Engn, Inchon 402751, South Korea
来源
KSME INTERNATIONAL JOURNAL | 2004年 / 18卷 / 03期
关键词
moving beam; vibration; spectral element model; natural frequency; critical moving speed; divergence; flutter;
D O I
10.1007/BF02996105
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The spectral element model is known to provide very accurate structural dynamic characteristics, while reducing the number of degree-of-freedom to resolve the computational and cost problems. Thus, the spectral element model for an axially moving Bernoulli-Euler beam subjected to axial tension is developed in the present paper. The high accuracy of the spectral element model is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, wave characteristics, and the static and dynamic stabilities of a moving beam are investigated.
引用
收藏
页码:395 / 406
页数:12
相关论文
共 50 条
  • [21] Finite element formulae for internal forces of Bernoulli-Euler beams under moving vehicles
    Lou, Ping
    Au, F. T. K.
    JOURNAL OF SOUND AND VIBRATION, 2013, 332 (06) : 1533 - 1552
  • [22] Bernoulli-Euler Beam Under Action of a Moving Thermal Source: Characteristics of the Dynamic Behavior
    N. F. Morozov
    D. A. Indeitsev
    A. V. Lukin
    I. A. Popov
    O. V. Privalova
    B. N. Semenov
    L. V. Shtukin
    Doklady Physics, 2019, 64 : 185 - 188
  • [23] A simple finite element for the geometrically exact analysis of Bernoulli-Euler rods
    da Costa e Silva, Catia
    Maassen, Sascha F.
    Pimenta, Paulo M.
    Schroeder, Joerg
    COMPUTATIONAL MECHANICS, 2020, 65 (04) : 905 - 923
  • [24] Strain proportional damping in Bernoulli-Euler beam theory
    Lisitano, Domenico
    Slavic, Janko
    Bonisoli, Elvio
    Boltezar, Miha
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2020, 145
  • [25] DYNAMIC-RESPONSE OF AN INFINITE BERNOULLI-EULER BEAM
    SHEEHAN, JP
    DEBNATH, L
    PURE AND APPLIED GEOPHYSICS, 1972, 97 (05) : 100 - &
  • [26] HIERARCHICAL BERNOULLI-EULER BEAM FINITE-ELEMENTS
    GANESAN, N
    ENGELS, RC
    COMPUTERS & STRUCTURES, 1992, 43 (02) : 297 - 304
  • [27] Localization in a Bernoulli-Euler Beam on an Inhomogeneous Elastic Foundation
    Indeitsev, D. A.
    Kuklin, T. S.
    Mochalova, Yu. A.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2015, 48 (01) : 41 - 48
  • [28] Dynamic analysis of Bernoulli-Euler beams with interval uncertainties under moving loads
    Giunta, Filippo
    Muscolino, Giuseppe
    Sofi, Alba
    Elishakoff, Isaac
    X INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS (EURODYN 2017), 2017, 199 : 2591 - 2596
  • [29] Spectral element methods for nonlinear spatio-temporal dynamics of an Euler-Bernoulli beam
    BarYoseph, PZ
    Fisher, D
    Gottlieb, O
    COMPUTATIONAL MECHANICS, 1996, 19 (02) : 136 - 151
  • [30] Spectral element methods for nonlinear spatio-temporal dynamics of an Euler-Bernoulli beam
    Technion-Israel Inst of Technology, Haifa, Israel
    Computational Mechanics, 1996, 19 (01) : 136 - 151