Resource and Job Execution Context-Aware Hadoop Configuration Tuning

被引:2
|
作者
Wang, Xinhe [1 ]
Zhang, Jianlin [2 ]
Shi, Yuliang [2 ,3 ]
机构
[1] Shandong Univ, Sch Comp Sci & Technol, Jinan, Peoples R China
[2] Shandong Univ, Sch Software, Jinan, Peoples R China
[3] Dareway Software Co Ltd, Jinan, Peoples R China
关键词
Hadoop configuration tuning; MapReduce; performance prediction; optimization; MAPREDUCE;
D O I
10.1109/CLOUD49709.2020.00029
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
MapReduce is a programming model, which is widely-used in parallel processing of big data. Its' performance is significantly affected by configuration parameters. However, the huge parameter space and interact of parameters make it impossible to explore all the parameter combinations manually. In this paper, we propose RJHCT, a novel approach to automatically tune the configuration parameters for MapReduce applications. We use random forest regression to predict the execution time of single task, and then we predict the job execution time by packing algorithm. Leveraging the prediction model, we use genetic algorithm to search the optimal configuration parameters automatically for a given MapReduce application. Experimental results demonstrated that RJHCT improves the performance of MapReduce applications by factors of 0.28x compared with the default configuration.
引用
收藏
页码:116 / 123
页数:8
相关论文
共 50 条
  • [21] Device resource allocation in context-aware mobile grid
    Chunlin L.
    Layuan L.
    International Journal of Computers and Applications, 2011, 33 (01) : 57 - 63
  • [22] Context-Aware Resource Management in Heterogenous Smart Environments
    Roy, Abhishek
    Saxena, Navrati
    Shin, Jitae
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2009, E92B (01) : 318 - 321
  • [23] A context-aware personalized resource recommendation for pervasive learning
    Junzhou Luo
    Fang Dong
    Jiuxin Cao
    Aibo Song
    Cluster Computing, 2010, 13 : 213 - 239
  • [24] A context-aware personalized resource recommendation for pervasive learning
    Luo, Junzhou
    Dong, Fang
    Cao, Jiuxin
    Song, Aibo
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2010, 13 (02): : 213 - 239
  • [25] Optimal Context-Aware Resource Allocation in Cellular Networks
    Abdelhadi, Ahmed
    Clancy, T. Charles
    2016 INTERNATIONAL CONFERENCE ON COMPUTING, NETWORKING AND COMMUNICATIONS (ICNC), 2016,
  • [26] Mining context-aware resource profiles in the presence of multitasking
    van Hulzen, Gerhardus A. W. M.
    Li, Chiao-Yun
    Martin, Niels
    van Zelst, Sebastiaan J.
    Depaire, Benoit
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 134
  • [27] Context-Aware Workflow Execution Engine for E-Contract Enactment
    Jain, Himanshu
    Krishna, P. Radha
    Karlapalem, Kamalakar
    CONCEPTUAL MODELING, ER 2016, 2016, 9974 : 293 - 301
  • [28] Improving the performance of Apache Hadoop on pervasive environments through context-aware scheduling
    Guilherme W. Cassales
    Andrea Schwertner Charão
    Manuele Kirsch-Pinheiro
    Carine Souveyet
    Luiz-Angelo Steffenel
    Journal of Ambient Intelligence and Humanized Computing, 2016, 7 : 333 - 345
  • [29] Executing semantic web services with a context-aware service execution agent
    Lopes, Antonio Luis
    Botelho, Luis Miguel
    SERVICE-ORIENTED COMPUTING: AGENTS, SEMANTICS, AND ENGINEERING, PROCEEDINGS, 2007, 4504 : 1 - +
  • [30] Improving the performance of Apache Hadoop on pervasive environments through context-aware scheduling
    Cassales, Guilherme W.
    Charao, Andrea Schwertner
    Kirsch-Pinheiro, Manuele
    Souveyet, Carine
    Steffenel, Luiz-Angelo
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2016, 7 (03) : 333 - 345