Deep Depth Estimation on 360° Images with a Double Quaternion Loss

被引:7
|
作者
Feng, Brandon Yushan [1 ]
Yao, Wangjue [1 ]
Liu, Zheyuan [2 ]
Varshney, Amitabh [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] Univ Virginia, Charlottesville, VA 22903 USA
基金
美国国家科学基金会;
关键词
PREDICTION;
D O I
10.1109/3DV50981.2020.00062
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
While 360 degrees images are becoming ubiquitous due to popularity of panoramic content, they cannot directly work with most of the existing depth estimation techniques developed for perspective images. In this paper, we present a deep-learning-based framework of estimating depth from 360 degrees images. We present an adaptive depth refinement procedure that refines depth estimates using normal estimates and pixel-wise uncertainty scores. We introduce double quaternion approximation to combine the loss of the joint estimation of depth and surface normal. Furthermore, we use the double quaternion formulation to also measure stereo consistency between the horizontally displaced depth maps, leading to a new loss function for training a depth estimation CNN. Results show that the new double-quaternionbased loss and the adaptive depth refinement procedure lead to better network performance. Our proposed method can be used with monocular as well as stereo images. When evaluated on several datasets, our method surpasses state-of-the-art methods on most metrics.
引用
收藏
页码:524 / 533
页数:10
相关论文
共 50 条
  • [21] UniFuse: Unidirectional Fusion for 360° Panorama Depth Estimation
    Jiang, Hualie
    Sheng, Zhe
    Zhu, Siyu
    Dong, Zilong
    Huang, Rui
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02): : 1519 - 1526
  • [22] PanoFormer: Panorama Transformer for Indoor 360° Depth Estimation
    Shen, Zhijie
    Lin, Chunyu
    Liao, Kang
    Nie, Lang
    Zheng, Zishuo
    Zhao, Yao
    COMPUTER VISION - ECCV 2022, PT I, 2022, 13661 : 195 - 211
  • [23] 360SD-Net: 360° Stereo Depth Estimation with Learnable Cost Volume
    Wang, Ning-Hsu
    Solarte, Bolivar
    Tsai, Yi-Hsuan
    Chiu, Wei-Chen
    Sun, Min
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 582 - 588
  • [24] The Depth Estimation Method Based on Double-Cues Fusion for Light Field Images
    Liu, Xinshi
    Fu, Dongmei
    Wu, Chunhong
    Si, Ze
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION AND CONTROL (ICMIC2019), 2020, 582 : 719 - 726
  • [25] Depth Estimation from SEM Images using Deep Learning and Angular Data Diversity
    Houben, Tim
    Pisarenco, Maxim
    Huisman, Thomas
    Onvlee, Hans
    van der Sommen, Fons
    de With, Peter
    METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVII, 2023, 12496
  • [26] Benchmark at the depth of vision, double images
    Aall, Anathon
    ZEITSCHRIFT FUR PSYCHOLOGIE UND PHYSIOLOGIE DER SINNESORGANE, 1908, 49 : 108 - 127
  • [27] Underwater Depth Estimation for Spherical Images
    Cui, Jiadi
    Jin, Lei
    Kuang, Haofei
    Xu, Qingwen
    Schwertfeger, Soren
    JOURNAL OF ROBOTICS, 2021, 2021
  • [28] PCformer: A parallel convolutional transformer network for 360° depth estimation
    Xu, Chao
    Yang, Huamin
    Han, Cheng
    Zhang, Chao
    IET COMPUTER VISION, 2023, 17 (02) : 156 - 169
  • [29] SDGE: Stereo Guided Depth Estimation for 360°Camera Sets
    Xu, Jialei
    Yin, Wei
    Gong, Dong
    Jiang, Junjun
    Liu, Xianming
    IEEE International Conference on Intelligent Robots and Systems, 2024, : 11179 - 11186
  • [30] DEPTH ESTIMATION FROM STEREOSCOPIC 360-DEGREE VIDEO
    Wegner, Krzysztof
    Stankiewicz, Olgierd
    Grajek, Tomasz
    Domanski, Marek
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 2945 - 2948