Molecular dynamics simulations of glyphosate in a DPPC lipid bilayer

被引:12
|
作者
Frigini, Ezequiel N. [1 ,2 ]
Lopez Cascales, J. J. [3 ]
Porasso, Rodolfo D. [1 ,2 ]
机构
[1] Univ Nacl San Luis, IMASL, Ejercito Los Andes 950,D5700HHW, San Luis, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Ejercito Los Andes 950,D5700HHW, San Luis, Argentina
[3] Univ Politecn Cartagena, Grp Bioinformat & Macromol BioMac, Area Quim Fis, Aulario 2,Campus Alfonso 13, Murcia 30203, Spain
关键词
Glyphosate; Lipid bilayer; Molecular dynamics; Free energy; PARTICLE MESH EWALD; COMPUTER-SIMULATIONS; FREE-ENERGY; DIPALMITOYLPHOSPHATIDYLCHOLINE; DIFFUSION; MEMBRANES; MODEL; DISTRIBUTIONS; MECHANISM; INTERIOR;
D O I
10.1016/j.chemphyslip.2018.04.003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Extensive molecular dynamics simulations have been performed to study the effect of glyphosate (in their neutral and charged forms, GLYP and GLYP(2-), respectively) on fully hydrated DiPalmitoylPhosphatidylCholine (DPPC) lipid bilayer. First, we calculated the free energy profile (using the Umbrella Sampling technique) for both states of charge of glyphosate. The minimum value for the free energy for GLYP is similar to-60 kJ mol(-1) located at z = +/- 1.7 nm (from the lipid bilayer center), and there is almost no maximum at the center of the lipid bilayer. By contrast, the minimum for GLYP(2-) is similar to-35 kJ mol(-1) located at z = +/- 1.4 nm (from the lipid bilayer center), and the maximum reaches similar to 35 kJ mol(-1) at the center of the lipid bilayer. Then, different lipid bilayer properties were analyzed for different glyphosate:lipid (G:L) ratios. The mean area per lipid was slightly affected, increasing only 5% (in the presence of glyphosate at high concentrations), which is in agreement with the slight decrease in deuterium order parameters. As for the thickness of the bilayer, it is observed that the state of charge produces opposite effects. On one hand, the neutral state produces an increase in the thickness of the lipid bilayer; on the other, the charged form produces a decrease in the thickness, which not depend linearly on the G:L ratios, either. The orientation of the DPPC head groups is practically unaffected throughout the range of the G:L ratios studied. Finally, the mobility of the lipids of the bilayer is strongly affected by the presence of glyphosate, considerably increasing its lateral diffusion coefficient noteworthy (one order of magnitude), with increasing G:L ratio.
引用
收藏
页码:111 / 117
页数:7
相关论文
共 50 条
  • [31] Molecular dynamics simulations of DMPC/DPPC mixed bilayers
    Poghosyan, Armen H.
    Gharabekyan, Hrant H.
    Shahinyan, Aram A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (01): : 73 - 89
  • [32] Interfacing molecular dynamics and macro-scale simulations for lipid bilayer vesicles
    Ayton, G
    Smondyrev, AM
    Bardenhagen, SG
    McMurtry, P
    Voth, GA
    BIOPHYSICAL JOURNAL, 2002, 83 (02) : 1026 - 1038
  • [33] Coarse-Grained Molecular Dynamics Simulations of an Inhomogeneous Ternary Lipid Bilayer
    Perlmutter, Jason D.
    Sachs, Jonathan N.
    BIOPHYSICAL JOURNAL, 2009, 96 (03) : 460A - 460A
  • [34] Structural properties of a highly polyunsaturated lipid bilayer from molecular dynamics simulations
    Saiz, L
    Klein, ML
    BIOPHYSICAL JOURNAL, 2001, 81 (01) : 204 - 216
  • [35] Characterizing the binding of annexin V to a lipid bilayer using molecular dynamics simulations
    Chen, Zhuxi
    Mao, Yanyan
    Yang, Jing
    Zhang, Tao
    Zhao, Lifen
    Yu, Kunqian
    Zheng, Mingyue
    Jiang, Hualiang
    Yang, Huaiyu
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2014, 82 (02) : 312 - 322
  • [36] MOLECULAR-DYNAMICS SIMULATIONS OF A LIPID BILAYER AND OF HEXADECANE - AN INVESTIGATION OF MEMBRANE FLUIDITY
    VENABLE, RM
    ZHANG, YH
    HARDY, BJ
    PASTOR, RW
    SCIENCE, 1993, 262 (5131) : 223 - 226
  • [37] Molecular dynamics simulations of hydrophobic and amphiphatic proteins interacting with a lipid bilayer membrane
    Lin, JH
    Baumgaertner, A
    COMPUTATIONAL AND THEORETICAL POLYMER SCIENCE, 2000, 10 (1-2): : 97 - 102
  • [38] Molecular Dynamics Simulations of Hemolytic Peptide δ-Lysin Interacting with a POPC Lipid Bilayer
    Lorello, Kim M.
    Kreutzberger, Alex J.
    King, Allison M.
    Lee, Hee-Seung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2014, 35 (03): : 783 - 792
  • [39] Stretched exponential dynamics in lipid bilayer simulations
    Brandt, Erik G.
    Edholm, Olle
    JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (11):
  • [40] Structure and dynamics of interfacial water in an Lα phase lipid bilayer from molecular dynamics simulations
    Åman, K
    Lindahl, E
    Edholm, O
    Håkansson, P
    Westlund, PO
    BIOPHYSICAL JOURNAL, 2003, 84 (01) : 102 - 115