A rooted map invariant, non-orientability and Jack symmetric functions

被引:6
|
作者
Brown, D. R. L.
Jackson, D. M.
机构
[1] Certicom Corp, Mississauga, ON L4W 5L1, Canada
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
map enumeration; Jack symmetric functions; orientability; Laplace-Beltrami operator; depth first search;
D O I
10.1016/j.jctb.2006.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence of a non-negative integer-valued invariant, called the Map-Jack invariant, for rooted maps has been conjectured by Goulden and Jackson [I.P. Goulden, D.M. Jackson, Connection coefficients, matchings, maps and combinatorial conjectures for Jack symmetric functions, Trans. Amer. Math. Soc. 348 (1996) 873-892]. It has the defining property that, if it is marked by an indeterminate b, then the generating series for rooted maps in locally orientable surfaces is a particular series, involving the Jack symmetric function J(lambda)((b+1)), that specialises to the generating series for rooted maps in orientable surfaces for b = 0 (and clearly to all surfaces for b = 1). We propose a candidate Map-Jack invariant eta that is determined by depth first search and by the local topological effect of deleting edges from maps, and give results that support its candidacy. In particular, we prove its correctness up to face partition. We also show how the algorithm for determining eta may be associated with the Jack symmetric functions. This is achieved by means of the Laplace-Beltrami operator. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:430 / 452
页数:23
相关论文
共 50 条
  • [21] Global Invariant Manifolds Near Homoclinic Orbits to a Real Saddle: (Non)Orientability and Flip Bifurcation
    Aguirre, Pablo
    Krauskopf, Bernd
    Osinga, Hinke M.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (04): : 1803 - 1846
  • [22] Non-surjectivity of the Clifford invariant map
    Parimala, R.
    Sridharan, R.
    Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 1994, 104 (01):
  • [23] NON-SURJECTIVITY OF THE CLIFFORD INVARIANT MAP
    PARIMALA, R
    SRIDHARAN, R
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1994, 104 (01): : 49 - 56
  • [24] Regular symmetric arrays for non-symmetric functions
    Chrzanowska-Jeske, M
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 1: VLSI, 1999, : 391 - 394
  • [25] Regular symmetric arrays for non-symmetric functions
    Portland State Univ, Portland, United States
    Proc IEEE Int Symp Circuits Syst, (I-391 - I-394):
  • [26] Invariant operators and pluriharmonic functions on symmetric irreducible Siegel domains
    Damek, E
    Hulanicki, A
    STUDIA MATHEMATICA, 2000, 139 (02) : 101 - 140
  • [27] Average sampling in shift invariant subspaces with symmetric averaging functions
    Sun, WC
    Zhou, XW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 287 (01) : 279 - 295
  • [28] Symmetric and non-symmetric periodic orbits for the digital filter map
    Vowden, C. J.
    Vowden, B. J.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2008, 23 (04): : 437 - 466
  • [29] An invariant symmetric non-selfadjoint differential operator
    Thomas, EGF
    JOURNAL OF LIE THEORY, 2002, 12 (01) : 245 - 257
  • [30] NON-SYMMETRIC TRANSLATION INVARIANT DIRICHLET FORMS
    BERG, C
    FORST, G
    INVENTIONES MATHEMATICAE, 1973, 21 (03) : 199 - 212