Illegal Intrusion Detection for In-Vehicle CAN Bus Based on Immunology Principle

被引:1
|
作者
Li, Xiaowei [1 ]
Liu, Feng [1 ]
Li, Defei [1 ]
Hu, Tianchi [1 ]
Han, Mu [1 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Jiangsu, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 08期
关键词
anomaly detection; enhanced DCA; CAN bus; in-vehicle network; DETECTION SYSTEM; NETWORKS;
D O I
10.3390/sym14081532
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The controller area network (CAN) bus has become one of the most commonly used protocols in automotive networks. Some potential attackers inject malicious data packets into the CAN bus through external interfaces for implementing illegal operations (intrusion). Anomaly detection is a technique for network intrusion detection which can detect malicious data packs by comparing the normal data packets with incoming data packets obtained from the network traffic. The data of a normal network is in a symmetric and stable state, which will become asymmetric when compromised. Considering the in-vehicle network, the CAN bus is symmetrically similar to the immune system in terms of internal network structure and external invasion threats. In this work, we use an intrusion detection method based on the dendritic cell algorithm (DCA). However, existing studies suggest the use of optimization methods to improve the accuracy of classification algorithms, and the current optimization of the parameters of the detection method mostly relies on the manual tuning of the parameters, which is a large workload. In view of the above challenges, this paper proposes a new detection algorithm based on the particle swarm optimization algorithm (PSO) and gravitational search algorithm (GSA) to improve the dendritic cell algorithm (PSO-GSA-DCA). PSO-GSA-DCA achieves adaptive parameter tuning and improves detection accuracy by mixing optimization algorithms and using them to optimize the dendritic cell algorithm classifier. Additionally, DCA-based CAN message attribute matching rules (measured by information gain and standard deviation of CAN data) are proposed for matching the three input signals (PAMP, DS, SS) of the DCA. The experimental results show that our proposed scheme has a significant improvement in accuracy, which can reach 91.64%, and lower time loss compared with other correlation anomaly detection schemes. Our proposed method also enables adaptive tuning, which solves the problem that most models now rely on manual tuning.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Comparative Performance Evaluation of Intrusion Detection Based on Machine Learning in In-Vehicle Controller Area Network Bus
    Moulahi, Tarek
    Zidi, Salah
    Alabdulatif, Abdulatif
    Atiquzzaman, Mohammed
    IEEE ACCESS, 2021, 9 : 99595 - 99605
  • [32] An intrusion detection method for the in-vehicle network
    Cheng, Anyu
    Peng, Yibo
    Yan, Hao
    Shen, Xiaona
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 4893 - 4899
  • [33] A Survey of Intrusion Detection for In-Vehicle Networks
    Wu, Wufei
    Li, Renfa
    Xie, Guoqi
    An, Jiyao
    Bai, Yang
    Zhou, Jia
    Li, Keqin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (03) : 919 - 933
  • [34] Intrusion detection system for in-vehicle networks
    Hamada, Yoshihiro
    Inoue, Masayuki
    Adachi, Naoki
    Ueda, Hiroshi
    Miyashita, Yukihiro
    Hata, Yoichi
    SEI Technical Review, 2019, (88): : 76 - 81
  • [35] Intrusion Detection System Based on Deep Neural Network and Incremental Learning for In-Vehicle CAN Networks
    Lin, Jiaying
    Wei, Yehua
    Li, Wenjia
    Long, Jing
    UBIQUITOUS SECURITY, 2022, 1557 : 255 - 267
  • [36] A Study of AI-based In-Vehicle Intrusion Detection Systems
    Gherbi, Elies
    Khemissa, Hamza
    Bouchouia, Mohammed Lamine
    Ayrault, Maxime
    2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2024, : 1036 - 1037
  • [37] Payload-Based Statistical Intrusion Detection for In-Vehicle Networks
    Kuwahara, Takuya
    Baba, Yukino
    Kashima, Hisashi
    Kishikawa, Takeshi
    Tsurumi, Junichi
    Haga, Tomoyuki
    Ujiie, Yoshihiro
    Sasaki, Takamitsu
    Matsushima, Hideki
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING: PAKDD 2018 WORKSHOPS, 2018, 11154 : 186 - 192
  • [38] Transformer-Based Attention Network for In-Vehicle Intrusion Detection
    Nguyen, Trieu Phong
    Nam, Heungwoo
    Kim, Daehee
    IEEE ACCESS, 2023, 11 : 55389 - 55403
  • [39] GIDS: GAN based Intrusion Detection System for In-Vehicle Network
    Seo, Eunbi
    Song, Hyun Min
    Kim, Huy Kang
    2018 16TH ANNUAL CONFERENCE ON PRIVACY, SECURITY AND TRUST (PST), 2018, : 286 - 291
  • [40] An Overview of Intrusion Detection Methods for In-Vehicle CAN Network of Intelligent Networked Vehicles
    Guan Y.
    Ji H.
    Cui Z.
    Li H.
    Chen L.
    Qiche Gongcheng/Automotive Engineering, 2023, 45 (06): : 922 - 935