GMBO: Group Mean-Based Optimizer for Solving Various Optimization Problems

被引:16
|
作者
Dehghani, Mohammad [1 ]
Montazeri, Zeinab [1 ]
Hubalovsky, Stepan [2 ]
机构
[1] Shiraz Univ Technol, Dept Elect & Elect Engn, Shiraz 7155713876, Iran
[2] Univ Hradec Kralove, Fac Sci, Dept Appl Cybernet, Hradec Kralove 50003, Czech Republic
关键词
optimization; optimization algorithms; population based; exploration; exploitation; ALGORITHM;
D O I
10.3390/math9111190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There are many optimization problems in the different disciplines of science that must be solved using the appropriate method. Population-based optimization algorithms are one of the most efficient ways to solve various optimization problems. Population-based optimization algorithms are able to provide appropriate solutions to optimization problems based on a random search of the problem-solving space without the need for gradient and derivative information. In this paper, a new optimization algorithm called the Group Mean-Based Optimizer (GMBO) is presented; it can be applied to solve optimization problems in various fields of science. The main idea in designing the GMBO is to use more effectively the information of different members of the algorithm population based on two selected groups, with the titles of the good group and the bad group. Two new composite members are obtained by averaging each of these groups, which are used to update the population members. The various stages of the GMBO are described and mathematically modeled with the aim of being used to solve optimization problems. The performance of the GMBO in providing a suitable quasi-optimal solution on a set of 23 standard objective functions of different types of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal is evaluated. In addition, the optimization results obtained from the proposed GMBO were compared with eight other widely used optimization algorithms, including the Marine Predators Algorithm (MPA), the Tunicate Swarm Algorithm (TSA), the Whale Optimization Algorithm (WOA), the Grey Wolf Optimizer (GWO), Teaching-Learning-Based Optimization (TLBO), the Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and the Genetic Algorithm (GA). The optimization results indicated the acceptable performance of the proposed GMBO, and, based on the analysis and comparison of the results, it was determined that the GMBO is superior and much more competitive than the other eight algorithms.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Biogeography Based optimization with Salp Swarm optimizer inspired operator for solving non-linear continuous optimization problems
    Garg, Vanita
    Deep, Kusum
    Alnowibet, Khalid Abdulaziz
    Zawbaa, Hossam M.
    Mohamed, Ali Wagdy
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 73 : 321 - 341
  • [42] A multiple search strategies based grey wolf optimizer for solving multi-objective optimization problems
    Liu, Junfeng
    Yang, Zhe
    Li, Dingfang
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 145 (145)
  • [43] Differential evolution based global best algorithm: an efficient optimizer for solving constrained and unconstrained optimization problems
    Turgut, Mert Sinan
    Turgut, Oguz Emrah
    SN APPLIED SCIENCES, 2020, 2 (04):
  • [44] SIRO: A Deep Learning-Based Next-Generation Optimizer for Solving Global Optimization Problems
    Oyelade, Olaide N.
    Ezugwu, Absalom E.
    Saha, Apu K.
    METAHEURISTICS, MIC 2024, PT I, 2024, 14753 : 45 - 61
  • [45] Differential evolution based global best algorithm: an efficient optimizer for solving constrained and unconstrained optimization problems
    Mert Sinan Turgut
    Oguz Emrah Turgut
    SN Applied Sciences, 2020, 2
  • [46] Mean-based iterative methods for solving nonlinear chemistry problems (November, 10.1007/S10910-019-01085-2, 2019)
    Chicharro, Francisco I.
    Cordero, Alicia
    Martinez, Tobias H.
    Torregrosa, Juan R.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2020, 58 (03) : 573 - 573
  • [47] Integrating a dimensional perturbation module into exponential distribution optimizer for solving optimization problems
    Shang, Pengpeng
    Liu, Sanyang
    Ying, Hao
    Wang, Chunfeng
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [48] An improved Chaotic Harris Hawks Optimizer for solving numerical and engineering optimization problems
    Dinesh Dhawale
    Vikram Kumar Kamboj
    Priyanka Anand
    Engineering with Computers, 2023, 39 : 1183 - 1228
  • [49] An improved Chaotic Harris Hawks Optimizer for solving numerical and engineering optimization problems
    Dhawale, Dinesh
    Kamboj, Vikram Kumar
    Anand, Priyanka
    ENGINEERING WITH COMPUTERS, 2023, 39 (02) : 1183 - 1228
  • [50] Barnacles Mating Optimizer: A Bio-Inspired Algorithm for Solving Optimization Problems
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    Saari, Mohd Mawardi
    Daniyal, Hamdan
    Daud, Mohd Razali
    Razali, Saifudin
    Mohamed, Amir Izzani
    2018 19TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2018, : 265 - 270