Sine-Gordon expectation values of exponential fields with variational perturbation theory

被引:5
|
作者
Lu, WF [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Phys, Inst Theoret Phys, Shanghai 200030, Peoples R China
[2] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
基金
中国国家自然科学基金;
关键词
one-point function; sine-Gordon field theory; variational perturbation approach; non-perturbation quantum field theory;
D O I
10.1016/j.physletb.2004.10.001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this Letter, expectation values of exponential fields in the 2-dimensional Euclidean sine-Gordon field theory are calculated with variational perturbation approach up to the second order. Our numerical analysis indicates that for not large values of the exponential -field parameter a, our results agree very well with the exact formula conjectured by Lukyanov and Zamolodchikov [Nucl. Phys. B 493 (1997) 571]. (C) 2004 Elsevier B.V. All rights resreved.
引用
收藏
页码:261 / 268
页数:8
相关论文
共 50 条
  • [21] PERTURBATION OF SINE-GORDON SOLITONS ON A FINITE LINE
    RUIJGROK, TW
    SCHOENMAKER, B
    SOKALSKI, K
    ACTA PHYSICA POLONICA B, 1990, 21 (06): : 441 - 448
  • [22] PERTURBATION THEORIES FOR SINE-GORDON SOLITON DYNAMICS
    SALERNO, M
    SOERENSEN, MP
    SKOVGAARD, O
    CHRISTIANSEN, PL
    WAVE MOTION, 1983, 5 (01) : 49 - 58
  • [23] Variational study of the discrete Sine-Gordon model
    Ding, GH
    Xu, BW
    Zhang, YM
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1996, 25 (01) : 123 - 126
  • [24] On singularity of a nonlinear variational sine-Gordon equation
    Song, K
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 189 (01) : 183 - 198
  • [25] Classical matrix sine-Gordon theory
    Park, QH
    Shin, HJ
    NUCLEAR PHYSICS B, 1996, 458 (1-2) : 327 - 354
  • [26] SOLITON MASS IN SINE-GORDON THEORY
    TORRESHERNANDEZ, JL
    NUCLEAR PHYSICS B, 1976, 116 (01) : 214 - 232
  • [27] VARIATIONAL EXPECTATION VALUES VIA PERTURBATION-THEORY CORRECTIONS
    RODWELL, WR
    CHEMICAL PHYSICS LETTERS, 1974, 29 (04) : 516 - 520
  • [28] THE SINE-GORDON MODEL - PERTURBATION-THEORY AND CLUSTER MONTE-CARLO
    HASENBUSCH, M
    MARCU, M
    PINN, K
    PHYSICA A, 1994, 211 (2-3): : 255 - 278
  • [29] DUALITY IN COMPLEX SINE-GORDON THEORY
    PARK, QH
    SHIN, HJ
    PHYSICS LETTERS B, 1995, 359 (1-2) : 125 - 132
  • [30] Traveling Wave Solutions of the Sine-Gordon and the Coupled Sine-Gordon Equations Using the Homotopy-Perturbation Method
    Sadighi, A.
    Ganji, D. D.
    Ganjavi, B.
    SCIENTIA IRANICA TRANSACTION B-MECHANICAL ENGINEERING, 2009, 16 (02): : 189 - 195