Towards high-performance aqueous zinc-ion battery via cesium ion intercalated vanadium oxide nanorods

被引:80
|
作者
Qi, Yae [1 ,2 ]
Huang, Jianhang [1 ,3 ]
Yan, Lei [1 ]
Cao, Yongjie [1 ]
Xu, Jie [1 ]
Bin, Duan [4 ]
Liao, Mochou [1 ]
Xia, Yongyao [1 ]
机构
[1] Fudan Univ, Inst New Energy, iChEM Collaborat Innovat Ctr Chem Energy Mat, Dept Chem,Shanghai Key Lab Mol Catalysis & Innovat, Shanghai 200433, Peoples R China
[2] Hexi Univ, Coll Chem & Chem Engn, Key Lab Hexi Corridor Resources Utilizat Gansu, Zhangye 734000, Peoples R China
[3] Zhejiang Normal Univ, Coll Chem & Life Sci, Key Lab, Minist Educ Adv Catalysis Mat, Jinhua 321004, Peoples R China
[4] Nantong Univ, Coll Chem & Chem Engn, Dept Polymer Mat & Sci, Nantong 226000, Peoples R China
关键词
Aqueous zinc-ion battery; Cesium; Vanadium oxide; Intercalation; CATHODE MATERIAL; HIGH-CAPACITY; RECENT PROGRESS; HIGH-ENERGY; STATE; LIFE;
D O I
10.1016/j.cej.2022.136349
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Layered vanadium oxide cathode materials have attracted extensive attentions in rechargeable aqueous zinc-ion batteries (ZIBs) owing to its large interlayer distance and high capacity. Unfortunately, it suffers from fast capacity decay during long-term cycle due to severe structural collapse. Herein, we intercalate cesium ion (Cs+) into hydrated vanadium pentoxide (V2O5 center dot nH(2)O) to obtain a reinforce layered structure, which forms strong Cs-O bond with the built-in oxygen atom and enhances the interaction between the layers to avoid the structure collapse. As a result, the Cs+ intercalated material (CsVO) presents an enhanced specific capacity (404.9 mAh g(-1) at current density of 0.1 A g(-1), 189.9 mAh g(-1) at 20 A g(-1)) and excellent long-term cycle stability (the capacity retention of 89% over 10,000 cycles even at 20 A g(-1)), that is obviously superior to the bare V2O5 center dot & nbsp;nH(2)O electrode. Furthermore, Zn2+/H+ co-insertion mechanism in aqueous ZIBs is demonstrated by ex-situ XRD and XPS characterizations.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Interlayer-modified pseudocapacitive ammonium vanadium with high reversibility and stability enabling high-performance aqueous zinc-ion battery
    Zhang, Xi
    Sun, Xiaohong
    Zheng, Chunming
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [42] High-Performance Aqueous Zinc-Ion Battery Based on Laser-Induced Graphene
    Yang, Chengjuan
    Tong, Yuchun
    Yang, Zhen
    Xiao, Hui
    Qi, Huimin
    Chen, Faze
    NANOMANUFACTURING AND METROLOGY, 2023, 6 (01)
  • [43] Polyaniline-Intercalated Vanadium Dioxide Nanoflakes for High-Performance Aqueous Zinc Ion Batteries
    Yuan, Xin
    Nie, Yanguang
    Zou, Tong
    Deng, Chuanlei
    Zhang, Youpeng
    Wang, Zanyao
    Wang, Jicheng
    Zhang, Chengliang
    Ye, Enjia
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (11): : 13692 - 13701
  • [44] Oxygen vacancies and N-doping in organic-inorganic pre-intercalated vanadium oxide for high-performance aqueous zinc-ion batteries
    Zhang, Feng
    Du, Min
    Miao, Zhenyu
    Li, Houzhen
    Dong, Wentao
    Sang, Yuanhua
    Jiang, Hechun
    Li, Wenzhi
    Liu, Hong
    Wang, Shuhua
    INFOMAT, 2022, 4 (11)
  • [45] Co-insertion of K+ and Ca2+ in vanadium oxide as high-performance aqueous zinc-ion battery cathode material
    Li, Zhaoao
    Yang, Linyu
    Wang, Shuying
    Zhu, Kunjie
    Li, Haibing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 992
  • [46] Intercalation design of layered vanadium phosphate based cathode material towards high-performance aqueous zinc-ion batteries
    Li, Yan
    Li, Wenxin
    Chen, Hongming
    Liu, Zijin
    Li, Xue
    Zhou, Dan
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 974
  • [47] Advanced electrolytes for high-performance aqueous zinc-ion batteries
    Wei, Jie
    Zhang, Pengbo
    Sun, Jingjie
    Liu, Yuzhu
    Li, Fajun
    Xu, Haifeng
    Ye, Ruquan
    Tie, Zuoxiu
    Sun, Lin
    Jin, Zhong
    CHEMICAL SOCIETY REVIEWS, 2024, 53 (20) : 10335 - 10369
  • [48] Low-Temperature and High-Performance Vanadium-Based Aqueous Zinc-Ion Batteries
    Jin, Tao
    Ye, Xiling
    Chen, Zhuo
    Bai, Shuai
    Zhang, Yining
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (04) : 4729 - 4740
  • [49] Carbon-coated hydrated vanadium dioxide for high-performance aqueous zinc-ion batteries
    Luo, Zexiang
    Zeng, Jing
    Liu, Zhen
    He, Hanbing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 906
  • [50] Vanadium-Containing Layered Materials as High-Performance Cathodes for Aqueous Zinc-Ion Batteries
    Lewis, Courtney-Elyce M.
    Fernando, Joseph F. S.
    Siriwardena, Dumindu P.
    Firestein, Konstantin L.
    Zhang, Chao
    von Treifeldt, Joel E.
    Golberg, Dmitri V.
    ADVANCED MATERIALS TECHNOLOGIES, 2022, 7 (04)