LARGE-CONTEXT CONVERSATIONAL REPRESENTATION LEARNING: SELF-SUPERVISED LEARNING FOR CONVERSATIONAL DOCUMENTS

被引:0
|
作者
Masumura, Ryo [1 ]
Makishima, Naoki [1 ]
Ihori, Mana [1 ]
Takashima, Akihiko [1 ]
Tanaka, Tomohiro [1 ]
Orihashi, Shota [1 ]
机构
[1] NTT Corp, NTT Media Intelligence Labs, Tokyo, Japan
关键词
Utterance-level sequential labeling; large-context conversational representation learning; self-supervised learning; conversational documents;
D O I
10.1109/SLT48900.2021.9383584
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel self-supervised learning method for handling conversational documents consisting of transcribed text of human-to-human conversations. One of the key technologies for understanding conversational documents is utterance-level sequential labeling, where labels are estimated from the documents in an utterance-by-utterance manner. The main issue with utterance-level sequential labeling is the difficulty of collecting labeled conversational documents, as manual annotations are very costly. To deal with this issue, we propose large-context conversational representation learning (LC-CRL), a self-supervised learning method specialized for conversational documents. A self-supervised learning task in LC-CRL involves the estimation of an utterance using all the surrounding utterances based on large-context language modeling. In this way, LC-CRL enables us to effectively utilize unlabeled conversational documents and thereby enhances the utterance-level sequential labeling. The results of experiments on scene segmentation tasks using contact center conversational datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页码:1012 / 1019
页数:8
相关论文
共 50 条
  • [31] Randomly shuffled convolution for self-supervised representation learning
    Oh, Youngjin
    Jeon, Minkyu
    Ko, Dohwan
    Kim, Hyunwoo J.
    INFORMATION SCIENCES, 2023, 623 : 206 - 219
  • [32] Self-supervised representation learning for SAR change detection
    Davis, Eric K.
    Houglund, Ian
    Franz, Douglas
    Allen, Michael
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXX, 2023, 12520
  • [33] AtmoDist: Self-supervised representation learning for atmospheric dynamics
    Hoffmann, Sebastian
    Lessig, Christian
    ENVIRONMENTAL DATA SCIENCE, 2023, 2
  • [34] Heuristic Attention Representation Learning for Self-Supervised Pretraining
    Van Nhiem Tran
    Liu, Shen-Hsuan
    Li, Yung-Hui
    Wang, Jia-Ching
    SENSORS, 2022, 22 (14)
  • [35] Self-supervised representation learning for surgical activity recognition
    Paysan, Daniel
    Haug, Luis
    Bajka, Michael
    Oelhafen, Markus
    Buhmann, Joachim M.
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (11) : 2037 - 2044
  • [36] Self-Supervised Learning With Segmental Masking for Speech Representation
    Yue, Xianghu
    Lin, Jingru
    Gutierrez, Fabian Ritter
    Li, Haizhou
    IEEE Journal on Selected Topics in Signal Processing, 2022, 16 (06): : 1367 - 1379
  • [37] CCBERT: Self-Supervised Code Change Representation Learning
    Zhou, Xin
    Xu, Bowen
    Han, DongGyun
    Yang, Zhou
    He, Junda
    Lo, David
    2023 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE MAINTENANCE AND EVOLUTION, ICSME, 2023, : 182 - 193
  • [38] ViewMix: Augmentation for Robust Representation in Self-Supervised Learning
    Das, Arjon
    Zhong, Xin
    IEEE ACCESS, 2024, 12 : 8461 - 8470
  • [39] Self-Supervised Fair Representation Learning without Demographics
    Chai, Junyi
    Wang, Xiaoqian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [40] Self-supervised Consensus Representation Learning for Attributed Graph
    Liu, Changshu
    Wen, Liangjian
    Kang, Zhao
    Luo, Guangchun
    Tian, Ling
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2654 - 2662