Automated Classification of Radiology Reports to Facilitate Retrospective Study in Radiology

被引:13
|
作者
Zhou, Yihua [1 ,2 ,3 ]
Amundson, Per K. [2 ,3 ]
Yu, Fang [2 ,3 ]
Kessler, Marcus M. [2 ,3 ,4 ]
Benzinger, Tammie L. S. [2 ,3 ]
Wippold, Franz J. [2 ,3 ]
机构
[1] St Louis Univ, Sch Med, Dept Radiol, St Louis, MO 63110 USA
[2] Washington Univ, Mallinckrodt Inst Radiol, Sch Med, St Louis, MO 63110 USA
[3] Washington Univ, Siteman Canc Ctr, Sch Med, St Louis, MO 63110 USA
[4] Univ Arkansas Med Sci, Div Nucl Med, Dept Radiol, Little Rock, AR 72205 USA
关键词
Radiology report classification; Machine learning; Natural language processing; Retrospective studies; Computer analysis; Radiology reporting; Radiology Information Systems (RIS);
D O I
10.1007/s10278-014-9708-x
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Retrospective research is an import tool in radiology. Identifying imaging examinations appropriate for a given research question from the unstructured radiology reports is extremely useful, but labor-intensive. Using the machine learning text-mining methods implemented in LingPipe [1], we evaluated the performance of the dynamic language model (DLM) and the Na < ve Bayesian (NB) classifiers in classifying radiology reports to facilitate identification of radiological examinations for research projects. The training dataset consisted of 14,325 sentences from 11,432 radiology reports randomly selected from a database of 5,104,594 reports in all disciplines of radiology. The training sentences were categorized manually into six categories (Positive, Differential, Post Treatment, Negative, Normal, and History). A 10-fold cross-validation [2] was used to evaluate the performance of the models, which were tested in classification of radiology reports for cases of sellar or suprasellar masses and colloid cysts. The average accuracies for the DLM and NB classifiers were 88.5 % with 95 % confidence interval (CI) of 1.9 % and 85.9 % with 95 % CI of 2.0 %, respectively. The DLM performed slightly better and was used to classify 1,397 radiology reports containing the keywords "sellar or suprasellar mass", or "colloid cyst". The DLM model produced an accuracy of 88.2 % with 95 % CI of 2.1 % for 959 reports that contain "sellar or suprasellar mass" and an accuracy of 86.3 % with 95 % CI of 2.5 % for 437 reports of "colloid cyst". We conclude that automated classification of radiology reports using machine learning techniques can effectively facilitate the identification of cases suitable for retrospective research.
引用
收藏
页码:730 / 736
页数:7
相关论文
共 50 条
  • [31] A Hybrid Text Classification and Language Generation Model for Automated Summarization of Dutch Breast Cancer Radiology Reports
    Nguyen, Elisa
    Theodorakopoulos, Daphne
    Pathak, Shreyasi
    Geerdink, Jeroen
    Vijlbrief, Onno
    van Keulen, Maurice
    Seifert, Christin
    2020 IEEE SECOND INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2020), 2020, : 72 - 81
  • [32] Dentomaxillofacial radiology in Australia and dentist satisfaction with radiology reports
    Selim, D. G.
    Sexton, C.
    Monsour, P.
    AUSTRALIAN DENTAL JOURNAL, 2018, 63 (04) : 402 - 413
  • [33] Multilingual RECIST classification of radiology reports using supervised learning
    Mottin, Luc
    Goldman, Jean-Philippe
    Jaggli, Christoph
    Achermann, Rita
    Gobeill, Julien
    Knafou, Julien
    Ehrsam, Julien
    Wicky, Alexandre
    Gerard, Camille L.
    Schwenk, Tanja
    Charrier, Melinda
    Tsantoulis, Petros
    Lovis, Christian
    Leichtle, Alexander
    Kiessling, Michael K.
    Michielin, Olivier
    Pradervand, Sylvain
    Foufi, Vasiliki
    Ruch, Patrick
    FRONTIERS IN DIGITAL HEALTH, 2023, 5
  • [34] Supervised machine learning and active learning in classification of radiology reports
    Nguyen, Dung H. M.
    Patrick, Jon D.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2014, 21 (05) : 893 - 901
  • [35] Epilepsy Radiology Reports Classification Using Deep Learning Networks
    Bayrak, Sengul
    Yucel, Eylem
    Takci, Hidayet
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (02): : 3589 - 3607
  • [36] AUTOMATED DIAGNOSIS IN RADIOLOGY
    HENSCHKE, CI
    HESSEL, SJ
    MCNEIL, BJ
    INVESTIGATIVE RADIOLOGY, 1979, 14 (03) : 195 - 201
  • [37] A Comparison of Transfer learning with BERT and ClinicalBERT for Classification of Radiology Reports
    Mithun, S.
    Jha, A. K.
    Sherkhane, U. B.
    Jaiswar, V.
    Purandare, N. C.
    Rangarajan, V.
    Dekker, A.
    Wee, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S242 - S242
  • [38] A novel hybrid approach to automated negation detection in clinical radiology reports
    Huang, Yang
    Lowe, Henry J.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2007, 14 (03) : 304 - 311
  • [39] Expanding a radiology lexicon using contextual patterns in radiology reports
    Percha, Bethany
    Zhang, Yuhao
    Bozkurt, Selen
    Rubin, Daniel
    Altman, Russ B.
    Langlotz, Curtis P.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2018, 25 (06) : 679 - 685
  • [40] Double Reading of Outsourced CT/MR Radiology Reports: Retrospective Analysis
    Vendrell, Jean-Francois
    Frandon, Julien
    Boussat, Bastien
    Cotton, Francois
    Ferretti, Gilbert
    Sans, Nicolas
    Tasu, Jean-Pierre
    Beregi, Jean-Paul
    Larbi, Ahmed
    JOURNAL OF PATIENT SAFETY, 2021, 17 (08) : E1267 - E1271