UNCERTAINTY PROPAGATION ANALYSIS OF THE AIRBORNE HYPERSPECTRAL DATA PROCESSING CHAIN

被引:0
|
作者
Beekhuizen, Johan [1 ]
Heuvelink, Gerard B. M. [1 ]
Reusen, Ils [2 ]
Biesemans, Jan [2 ]
机构
[1] Univ Wageningen & Res Ctr, Environm Sci Grp, Wageningen, Netherlands
[2] Flemish Inst Technol Res VITO, Dept Remote Sensing & Earth Observat Proc, Mol, Belgium
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The processing of airborne hyperspectral imagery introduces uncertainty. In order to quantify the uncertainty in the resulting hyperspectral imagery, a concept for Uncertainty Propagation Analysis (UPA) was developed and applied. The UPA entails the Monte Carlo stochastic simulation of uncertain components of the Processing and Archiving Facility (PAF), resulting in a chain of Monte Carlo analyses. First, the Probability Distribution Functions (PDF) of the uncertain model inputs have to be derived, from which numerous model inputs are simulated. By running the PAF using these sampled model inputs, a range of possible model outcomes or simulated realities is created. The simulation results of the final processing step provide valuable information for deriving quality layers. We applied an UPA of the boresight angles and a DEM to the VITO-PAF. Given the user requirement of pixel to sub-pixel accuracy with respect to the geo-location, results show that UPA is a powerful technique for the production of quality layers informing the user about the spatial-dependent total uncertainty and the contribution of uncertain model parameter in this total uncertainty.
引用
收藏
页码:466 / +
页数:2
相关论文
共 50 条
  • [21] Validation of Information Products of Airborne Hyperspectral Imagery Processing
    V. V. Kozoderov
    T. V. Kondranin
    E. V. Dmitriev
    V. P. Kamentsev
    Izvestiya, Atmospheric and Oceanic Physics, 2019, 55 : 1022 - 1032
  • [22] Validation of Information Products of Airborne Hyperspectral Imagery Processing
    Kozoderov, V. V.
    Kondranin, T. V.
    Dmitriev, E. V.
    Kamentsev, V. P.
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2019, 55 (09) : 1022 - 1032
  • [23] Automated hyperspectral ground processing chain
    Alexander, RJ
    Cheatham, PS
    IMAGING SPECTROMETRY IV, 1998, 3438 : 264 - 273
  • [24] On the Atmospheric Correction of Antarctic Airborne Hyperspectral Data
    Black, Martin
    Fleming, Andrew
    Riley, Teal
    Ferrier, Graham
    Fretwell, Peter
    McFee, John
    Achal, Stephen
    Diaz, Alejandra Umana
    REMOTE SENSING, 2014, 6 (05) : 4498 - 4514
  • [25] Application of airborne hyperspectral data for precise agriculture
    Guan, YN
    Guo, S
    Xue, Y
    Liu, JG
    Zhang, X
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 4195 - 4198
  • [26] Construction and Data Analysis of Test-bed by Hyperspectral Airborne Remote Sensing
    Chang, Anjin
    Kim, Yongil
    Choi, Seokkeun
    Han, Dongyeob
    Choi, Jaewan
    Kim, Yongmin
    Han, Youkyung
    Park, Honglyun
    Wang, Biao
    Lim, Heechang
    KOREAN JOURNAL OF REMOTE SENSING, 2013, 29 (02) : 161 - 172
  • [27] Application of Spectral Mixture Analysis to Vessel Monitoring Using Airborne Hyperspectral Data
    Park, Jae-Jin
    Kim, Tae-Sung
    Park, Kyung-Ae
    Oh, Sangwoo
    Lee, Moonjin
    Foucher, Pierre-Yves
    REMOTE SENSING, 2020, 12 (18)
  • [28] Comparative Analysis of Classification Techniques for Crop Classification Using Airborne Hyperspectral Data
    Reshma, S.
    Veni, S.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2017, : 2272 - 2276
  • [29] Measurement data processing using random matrices: A generalized formula for the propagation of uncertainty
    D'Antona, G
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2004, 53 (02) : 537 - 545
  • [30] Processing misregistered hyperspectral data
    Casey, Jason T.
    Lach, Stephen R.
    Kerekes, John P.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XIII, 2007, 6565