A Krylov subspace based low-rank channel estimation in OFDM systems

被引:5
|
作者
Oliver, J. [1 ]
Aravind, R. [1 ]
Prabhu, K. M. M. [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Madras 600036, Tamil Nadu, India
关键词
Channel estimation; Eigenvalue decomposition (EVD); Krylov subspace; Minimum mean square error (MMSE); Orthogonal frequency division multiplexing (OFDM); Wiener filter (WF);
D O I
10.1016/j.sigpro.2009.12.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate a low-rank minimum mean-square error (MMSE) channel estimator in orthogonal frequency division multiplexing (OFDM) systems. The proposed estimator is derived by using the multi-stage nested Wiener filter (MSNWF) identified in the literature as a Krylov subspace approach for rank reduction. We describe the low-rank MMSE expressions for exploiting the time correlation function (TCF) of the channel path gains. The Krylov subspace technique requires neither eigenvalue decomposition (EVD) nor the inverse of the covariance matrices for parameter estimation. We show that the Krylov channel estimator can perform as well as the EVD estimator with a much smaller rank. Simulation results obtained confirm the superiority of the proposed Krylov low-rank channel estimator in approaching near full-rank MSE performance. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1861 / 1872
页数:12
相关论文
共 50 条
  • [21] Low-rank signal subspace: parameterization, projection and signal estimation
    Zvonarev, Nikita
    Golyandina, Nina
    STATISTICS AND ITS INTERFACE, 2023, 16 (01) : 117 - 132
  • [22] Dominant subspace and low-rank approximations from block Krylov subspaces without a prescribed gap
    Massey, Pedro
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 708 : 112 - 149
  • [23] Computing low-rank approximations of the Frechet derivative of a matrix function using Krylov subspace methods
    Kandolf, Peter
    Koskela, Antti
    Relton, Samuel D.
    Schweitzer, Marcel
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (06)
  • [24] Improved Subspace Estimation for Low-Rank Model-Based Accelerated Cardiac Imaging
    Christodoulou, Anthony G.
    Hitchens, T. Kevin
    Wu, Yijen L.
    Ho, Chien
    Liang, Zhi-Pei
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (09) : 2451 - 2457
  • [25] Low-Rank Channel Estimation for MIMO MB-OFDM UWB System Over Spatially Correlated Channel
    Hajjaj, M.
    Chainbi, W.
    Bouallegue, R.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2016, 5 (01) : 48 - 51
  • [26] On the convergence of Krylov methods with low-rank truncations
    Davide Palitta
    Patrick Kürschner
    Numerical Algorithms, 2021, 88 : 1383 - 1417
  • [27] Subspace tracking in low-rank real-time systems
    Erbay, H
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 173 (02) : 1300 - 1309
  • [28] On the convergence of Krylov methods with low-rank truncations
    Palitta, Davide
    Kuerschner, Patrick
    NUMERICAL ALGORITHMS, 2021, 88 (03) : 1383 - 1417
  • [29] Generalized Consistent Estimation on Low-Rank Krylov Subspaces of Arbitrarily High Dimension
    Rubio, Francisco
    Mestre, Xavier
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (10) : 3787 - 3800
  • [30] Channel Estimation for MIMO-OFDM Systems Based on Subspace Pursuit Algorithm
    Chen, Enqing
    Xiang, Xiaoqiang
    Mu, Xiaomin
    2013 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2013, : 1151 - 1154