A Krylov subspace based low-rank channel estimation in OFDM systems

被引:5
|
作者
Oliver, J. [1 ]
Aravind, R. [1 ]
Prabhu, K. M. M. [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Madras 600036, Tamil Nadu, India
关键词
Channel estimation; Eigenvalue decomposition (EVD); Krylov subspace; Minimum mean square error (MMSE); Orthogonal frequency division multiplexing (OFDM); Wiener filter (WF);
D O I
10.1016/j.sigpro.2009.12.004
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We investigate a low-rank minimum mean-square error (MMSE) channel estimator in orthogonal frequency division multiplexing (OFDM) systems. The proposed estimator is derived by using the multi-stage nested Wiener filter (MSNWF) identified in the literature as a Krylov subspace approach for rank reduction. We describe the low-rank MMSE expressions for exploiting the time correlation function (TCF) of the channel path gains. The Krylov subspace technique requires neither eigenvalue decomposition (EVD) nor the inverse of the covariance matrices for parameter estimation. We show that the Krylov channel estimator can perform as well as the EVD estimator with a much smaller rank. Simulation results obtained confirm the superiority of the proposed Krylov low-rank channel estimator in approaching near full-rank MSE performance. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1861 / 1872
页数:12
相关论文
共 50 条
  • [1] LOW-RANK TENSOR KRYLOV SUBSPACE METHODS FOR PARAMETRIZED LINEAR SYSTEMS
    Kressner, Daniel
    Tobler, Christine
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2011, 32 (04) : 1288 - 1316
  • [2] Low-rank pilot-symbol-aided channel estimation for MIMO-OFDM systems
    Lee, CD
    Kwak, JS
    Lee, JH
    VTC2004-FALL: 2004 IEEE 60TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-7: WIRELESS TECHNOLOGIES FOR GLOBAL SECURITY, 2004, : 469 - 473
  • [3] Randomized block Krylov subspace algorithms for low-rank quaternion matrix approximations
    Li, Chaoqian
    Liu, Yonghe
    Wu, Fengsheng
    Che, Maolin
    NUMERICAL ALGORITHMS, 2024, 96 (02) : 687 - 717
  • [4] FROM LOW-RANK APPROXIMATION TO A RATIONAL KRYLOV SUBSPACE METHOD FOR THE LYAPUNOV EQUATION
    Kolesnikov, D. A.
    Oseledets, I. V.
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (04) : 1622 - 1637
  • [5] An Overview of Low-Rank Channel Estimation for Massive MIMO Systems
    Xie, Hongxiang
    Gao, Feifei
    Jin, Shi
    IEEE ACCESS, 2016, 4 : 7313 - 7321
  • [6] Randomized block Krylov subspace algorithms for low-rank quaternion matrix approximations
    Chaoqian Li
    Yonghe Liu
    Fengsheng Wu
    Maolin Che
    Numerical Algorithms, 2024, 96 : 687 - 717
  • [7] Subspace based channel estimation in MIMO-OFDM Systems
    Bai, W
    Bu, ZY
    VTC2004-SPRING: 2004 IEEE 59TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, PROCEEDINGS, 2004, : 598 - 602
  • [8] Subspace Learning Based Low-Rank Representation
    Tang, Kewei
    Liu, Xiaodong
    Su, Zhixun
    Jiang, Wei
    Dong, Jiangxin
    COMPUTER VISION - ACCV 2016, PT I, 2017, 10111 : 416 - 431
  • [9] Low-Rank Tensor Decomposition-Aided Channel Estimation for Millimeter Wave MIMO-OFDM Systems
    Zhou, Zhou
    Fang, Jun
    Yang, Linxiao
    Li, Hongbin
    Chen, Zhi
    Blum, Rick S.
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2017, 35 (07) : 1524 - 1538
  • [10] Toward real-time adaptive low-rank LMMSE channel estimation of MIMO-OFDM systems
    Ozdemir, Mehmet K.
    Arslan, Huseyin
    Arvas, Ercument
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2006, 5 (10) : 2675 - 2678