Virtual Keyboards With Real-Time and Robust Deep Learning-Based Gesture Recognition

被引:4
|
作者
Lee, Tae-Ho [1 ]
Kim, Sunwoong [2 ]
Kim, Taehyun [1 ]
Kim, Jin-Sung [3 ]
Lee, Hyuk-Jae [1 ]
机构
[1] Seoul Natl Univ, Interuniv Semicond Res Ctr, Dept Elect & Comp Engn, Seoul 08226, South Korea
[2] Univ Washington, Div Engn & Math, Bothell, WA 98011 USA
[3] Sun Moon Univ, Dept Elect Engn, Asan 31460, South Korea
关键词
Layout; Keyboards; Indexes; Thumb; Mathematical models; Real-time systems; Optimization; Augmented reality (AR); deep learning (DL); gesture recognition (GR); keyboard layout optimization; virtual keyboard (VKB); virtual reality (VR); SYSTEM; LAYOUT;
D O I
10.1109/THMS.2022.3165165
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In head-mounted display devices for augmented reality and virtual reality, external signals are often entered using a virtual keyboard (VKB). Among various user interfaces for VKBs, hand gestures are widely used because they are fast and intuitive. This work proposes a gesture-recognition (GR)-based VKB algorithm that is accurate in any environment and operates in real time. Specifically, the proposed ambidextrous VKB layouts reduce the total finger travel distance on one-hand VKB layouts. Additionally, a fast typing action is proposed to use characteristics when previous and current keys are adjacent. To be robust in any environment, we utilize a deep learning (DL)-based GR method in the proposed VKB algorithm. To train DL networks, seven classes are defined and an automated dataset generation method is proposed to reduce the necessary time and effort. The proposed one-hand VKB layout with the fast typing action shows a 1.5x faster typing speed than the popular ABC keyboard layout. Furthermore, the proposed ambidextrous VKB layout brings an additional 52% improvement compared with the proposed one-hand VKB layout. The proposed DL-based GR method implemented on the well-known YOLOv3 machine learning framework shows a mean average precision rate of 95% for images including background colors similar to skin color. The proposed DL-based GR method for one-hand and ambidextrous VKBs achieves around 41 frames per second on a software platform, which allows real-time processing.
引用
收藏
页码:725 / 735
页数:11
相关论文
共 50 条
  • [21] Real-Time Gesture Recognition Based on Kinect
    Bao Zhiqiang
    Lu Chengang
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (03)
  • [22] Deep Learning for Real-Time Robust Facial Expression Recognition on a Smartphone
    Song, Inchul
    Kim, Hyun-Jun
    Jeon, Paul Barom
    2014 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE), 2014, : 566 - 569
  • [23] Light invariant real-time robust hand gesture recognition
    Chaudhary, Ankit
    Raheja, J. L.
    OPTIK, 2018, 159 : 283 - 294
  • [24] A Deep Learning-Based Real-time Seizure Detection System
    Shawki, N.
    Elseify, T.
    Cap, T.
    Shah, V
    Obeid, I
    Picone, J.
    2020 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM, 2020,
  • [25] Real-Time Deep Learning-Based Object Detection Framework
    Tarimo, William
    Sabra, Moustafa M.
    Hendre, Shonan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1829 - 1836
  • [26] A Deep Learning-based Approach for Real-time Facemask Detection
    Boulila, Wadii
    Alzahem, Ayyub
    Almoudi, Aseel
    Afifi, Muhanad
    Alturki, Ibrahim
    Driss, Maha
    20TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2021), 2021, : 1478 - 1481
  • [27] Deep Learning-based Real-time Switching of Reconfigurable Microgrids
    Dabbaghjamanesh, Morteza
    Zhang, Jie
    2020 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2020,
  • [28] Real-time masked face recognition using deep learning-based double generator network
    Sumathy, G.
    Usha, M.
    Rajakumar, S.
    Jayapriya, P.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 325 - 334
  • [29] Deep learning-based hand gesture recognition for collaborative robots
    Nuzzi C.
    Pasinetti S.
    Lancini M.
    Docchio F.
    Sansoni G.
    IEEE Instrumentation and Measurement Magazine, 2019, 22 (02): : 44 - 51
  • [30] Deep Learning-Based Hand Gesture Recognition for Collaborative Robots
    Nuzzi, Cristina
    Pasinetti, Simone
    Lancini, Matteo
    Docchio, Franco
    Sansoni, Giovanna
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2019, 22 (02) : 44 - 51