DTM extraction from DSM using a multi-scale DTM fusion strategy based on deep learning

被引:15
|
作者
Amirkolaee, Hamed Amini [1 ]
Arefi, Hossein [1 ]
Ahmadlou, Mohammad [2 ]
Raikwar, Vinay [3 ]
机构
[1] Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran, Iran
[2] KN Toosi Univ Technol, Geodesy & Geomat Fac, GIS Dept, Tehran, Iran
[3] Govt Mahatama Gandhi Smrati PG Coll, Itarsi, Madhya Pradesh, India
关键词
Digital surface model; Digital terrain model; Convolutional neural network; Multi-scale fusion; PROGRESSIVE TIN DENSIFICATION; LIDAR DATA; MORPHOLOGICAL FILTER; CLASSIFICATION; SEGMENTATION; ALGORITHM; IMAGES;
D O I
10.1016/j.rse.2022.113014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Extraction of digital terrain model (DTM) from Digital Surface Model (DSM) still faces many problems in a complex scene with geometric ambiguities such as steep slope forested environments and contiguous non-ground regions. In this paper, an approach based on deep learning is proposed to generate DTM directly from DSM without applying filtering methods for eliminating non-ground pixels. In this regard, first, in the preprocessing step, the data is prepared for entering into the proposed deep network. Then, a hybrid deep convolutional neural network (HDCNN) is proposed which is a combination of the U-net architecture and residual networks. In this network, effective features are generate4d in different scales during the downsampling process from the input DSM and the DTM is extracted during the upsampling process. To rectify the results, a multi-scale fusion strategy is proposed to produce the final DTM by fusing the generated DTMs at different scales and with different spatial shifts. The performance of the proposed approach is analyzed by implementing four different evaluation scenarios in five different datasets. The evaluation results demonstrated significant performance and high generalizability of the proposed approach. The proposed network also outperforms the deep learning-based filtering methods and two reference DTM extraction algorithms especially in challenging regions.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Hyperspectral Image Reconstruction Using Multi-scale Fusion Learning
    Han, Xian-Hua
    Zheng, Yinqiang
    Chen, Yen-Wei
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (01)
  • [32] Automatic Conversion of DSM to DTM by Classification Techniques Using Multi-date Stereo Data from Cartosat-1
    Sreedhar, M.
    Muralikrishnan, S.
    Dadhwal, V. K.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2015, 43 (03) : 513 - 520
  • [33] Multi-Scale and Multi-Task Deep Learning Framework for Automatic Road Extraction
    Lu, Xiaoyan
    Zhong, Yanfei
    Zheng, Zhuo
    Liu, Yanfei
    Zhao, Ji
    Ma, Ailong
    Yang, Jie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (11): : 9362 - 9377
  • [34] Lightweight road extraction model based on multi-scale feature fusion
    Liu Y.
    Chen Y.
    Gao L.
    Hong J.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2024, 58 (05): : 951 - 959
  • [35] Extraction of Winter Wheat Planting Area Based on Multi-Scale Fusion
    Li, Weiguo
    Zhang, Hong
    Li, Wei
    Ma, Tinghuai
    REMOTE SENSING, 2023, 15 (01)
  • [36] A New Learning-to-Rank Framework for Keyphrase Extraction Using Multi-scale Ratings and Feature Fusion
    Florescu, Corina
    Shil, Avijeet
    Jin, Wei
    WEB AND BIG DATA, APWEB-WAIM 2024, PT V, 2024, 14965 : 63 - 79
  • [37] Multi-Scale Deep Feature Fusion with Machine Learning Classifier for Birdsong Classification
    Li, Wei
    Lv, Danju
    Yu, Yueyun
    Zhang, Yan
    Gu, Lianglian
    Wang, Ziqian
    Zhu, Zhicheng
    APPLIED SCIENCES-BASEL, 2025, 15 (04):
  • [38] Loop Closure Detection Based on Multi-Scale Deep Feature Fusion
    Chen, Baifan
    Yuan, Dian
    Liu, Chunfa
    Wu, Qian
    APPLIED SCIENCES-BASEL, 2019, 9 (06):
  • [39] A multi-scale sentiment recognition network based on deep learning
    Zhang, Ning
    Zhang, Xiufeng
    2023 3RD ASIA-PACIFIC CONFERENCE ON COMMUNICATIONS TECHNOLOGY AND COMPUTER SCIENCE, ACCTCS, 2023, : 526 - 530
  • [40] ACCELERATION OF TOPOGRAPHIC MAP PRODUCTION USING SEMI-AUTOMATIC DTM FROM DSM RADAR DATA
    Rizaldy, Aldino
    Mayasari, Ratna
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 47 - 54