Metal-Organic Framework Derived Iron Sulfide-Carbon Core-Shell Nanorods as a Conversion-Type Battery Material

被引:82
|
作者
Huang, Wei [1 ,2 ]
Li, Shuo [1 ]
Cao, Xianyi [2 ]
Hou, Chengyi [2 ]
Zhang, Zhen [1 ]
Feng, Jinkui [1 ]
Ci, Lijie [1 ]
Si, Pengchao [1 ]
Chi, Qijin [2 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, SDU & Rice Joint Ctr Carbon Nanomat, Key Lab Liquid Solid Struct Evolut & Proc Mat,Min, Jinan 250061, Peoples R China
[2] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark
来源
关键词
Carbon-coated nanomaterial; Iron sulfide; Metal-organic framework; One-pot templated synthesis; Lithium-ion storage; REDUCED GRAPHENE OXIDE; HIGH-RATE PERFORMANCE; LITHIUM ION BATTERIES; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; HIGH-CAPACITY; ELECTRODE MATERIALS; MICROPOROUS CARBON; POROUS STRUCTURE; STORAGE;
D O I
10.1021/acssuschemeng.7b00430
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the design and nanoengineering of carbon-film-coated iron sulfide nanorods (C@Fe7S8) as an advanced conversion-type lithium-ion storage material. The structural advantages of the iron-based metal-organic framework (MIL-88-Fe) as both a sacrificed template and a precursor are explored to prepare carbon-encapsulated ploy iron sulfide through solid-state chemical sulfurizing. The resulting core-shell nanorods consisting of approximately 13% carbon and 87% Fe7S8 have a hierarchically porous structure and a very high specific surface area of 277 m(2) g(-1). When tested for use in fabrication of a redox conversion-type lithium-ion battery, this composite material has demonstrated high lithium-ion storage capacity at 1148 mA h g(-1) under the current rate of 500 mA g(-1) for 170 cycles and an impressive rate-retention capability at 657 mA h g(-1) with a current density of 2000 mA On the basis of systematic structural analysis and microscopic mapping, we discuss the charge-discharge mechanisms and the crucial factors associated with the stability and structural changes upon charge-discharge cycling.
引用
收藏
页码:5039 / 5048
页数:10
相关论文
共 50 条
  • [21] Unveiling the mechanism of lattice-mismatched crystal growth of a core-shell metal-organic framework
    Pambudi, Fajar I.
    Anderson, Michael W.
    Attfield, Martin P.
    CHEMICAL SCIENCE, 2019, 10 (41) : 9571 - 9575
  • [22] Design and Preparation of a Core-Shell Metal-Organic Framework for Selective CO2 Capture
    Li, Tao
    Sullivan, Jeanne E.
    Rosi, Nathaniel L.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (27) : 9984 - 9987
  • [23] Metal-Organic Framework-Derived Core-Shell Nanospheres Anchored on Fe-Filled Carbon Nanotube Sponge for Strong Wideband Microwave Absorption
    Hu, Qingmei
    Yang, Rongliang
    Yang, Shaodian
    Huang, Weibo
    Zeng, Zhiping
    Gui, Xuchun
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (08) : 10577 - 10587
  • [24] Metal-organic framework-derived porous carbon-mediated ZnO-nano-ZnO core-shell structure with excellent photocatalytic activity
    Zhou, Dan-Yang
    Pan, Guang-Yu
    Xu, Mei-Ling
    He, Xiong
    Li, Tao
    Liu, Fu-Tian
    Jiang, Feng-Hua
    Li, Kui
    CrystEngComm, 2022, 25 (03): : 425 - 431
  • [25] Single-step synthesis and interface tuning of core-shell metal-organic framework nanoparticles
    Orr, Kieran W. P.
    Collins, Sean M.
    Reynolds, Emily M.
    Nightingale, Frank
    Bostroem, Hanna L. B.
    Cassidy, Simon J.
    Dawson, Daniel M.
    Ashbrook, Sharon E.
    Magdysyuk, Oxana, V
    Midgley, Paul A.
    Goodwin, Andrew L.
    Yeung, Hamish H-M
    CHEMICAL SCIENCE, 2021, 12 (12) : 4494 - 4502
  • [26] Theranostic metal-organic framework core-shell composites for magnetic resonance imaging and drug delivery
    Zhao, Huai-Xin
    Zou, Quan
    Sun, Shao-Kai
    Yu, Chunshui
    Zhang, Xuejun
    Li, Rui-Jun
    Fu, Yan-Yan
    CHEMICAL SCIENCE, 2016, 7 (08) : 5294 - 5301
  • [27] Self-assembled multifunctional core-shell highly porous metal-organic framework nanoparticles
    Qiu, Jingwen
    Li, Xue
    Steenkeste, Karine
    Barroca-Aubry, Nadine
    Aymes-Chodur, Caroline
    Roger, Philippe
    Casas-Solvas, Juan M.
    Vargas-Berenguel, Antonio
    Rihouey, Christophe
    Picton, Luc
    Gref, Ruxandra
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2020, 581
  • [28] Metal-organic framework-derived porous carbon-mediated ZnO-nano-ZnO core-shell structure with excellent photocatalytic activity
    Zhou, Dan-Yang
    Pan, Guang-Yu
    Xu, Mei-Ling
    He, Xiong
    Li, Tao
    Liu, Fu-Tian
    Jiang, Feng-Hua
    Li, Kui
    CRYSTENGCOMM, 2023, 25 (03) : 425 - 431
  • [29] Magnetic Co-based carbon materials derived from core-shell metal-organic frameworks for organic contaminant elimination with peroxymonosulfates
    Xia, Yannan
    He, Junchu
    Chen, Shan
    Gao, Shiyuan
    Wang, Wentao
    Lu, Ping
    Yao, Yuyuan
    DALTON TRANSACTIONS, 2019, 48 (27) : 10251 - 10259
  • [30] Fabrication of core-shell nanohybrid derived from iron-based metal-organic framework grappled on nitrogen-doped graphene for oxygen reduction reaction
    Zhang, Yating
    Wang, Peng
    Yang, Juan
    Li, Keke
    Long, Xueying
    Li, Meng
    Zhang, Kaibo
    Qiu, Jieshan
    CHEMICAL ENGINEERING JOURNAL, 2020, 401