Stationary solutions to a nonlinear Schrodinger equation with potential in one dimension

被引:5
|
作者
Maris, M [1 ]
机构
[1] Univ Paris 11, Dept Math, UMR 8628, F-91405 Orsay, France
关键词
D O I
10.1017/S0308210500002456
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the one-dimensional Gross-Pitaevskii-Schrodinger equation with a potential U moving at velocity v. For a fixed v less than the sound velocity, it is proved that there exist two time-independent solutions if the potential is not too big.
引用
收藏
页码:409 / 437
页数:29
相关论文
共 50 条
  • [41] Infinitely many stationary solutions of discrete vector nonlinear Schrodinger equation with symmetry
    Yang, Minbo
    Zhao, Fukun
    Ding, Yanheng
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (12) : 4230 - 4238
  • [42] Multiple Positive Solutions to a Class of Modified Nonlinear Schrodinger Equation in a High Dimension
    Zhong, Yansheng
    Li, Yongqing
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (04) : 1819 - 1840
  • [43] SPECIFIC SOLUTIONS TO NONLINEAR SCHRODINGER-EQUATION IN 2-SPATIAL DIMENSION
    MUKHERJEE, R
    CHOWDHURY, AR
    PHYSICA SCRIPTA, 1985, 31 (06): : 439 - 446
  • [44] Global bounds for the cubic nonlinear Schrodinger equation (NLS) in one space dimension
    Ifrim, Mihaela
    Tataru, Daniel
    NONLINEARITY, 2015, 28 (08) : 2661 - 2675
  • [45] Prescribed mass ground states for a doubly nonlinear Schrodinger equation in dimension one
    Boni, Filippo
    Dovetta, Simone
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (01)
  • [46] STABILITY AND INSTABILITY FOR SUBSONIC TRAVELING WAVES OF THE NONLINEAR SCHRODINGER EQUATION IN DIMENSION ONE
    Chiron, David
    ANALYSIS & PDE, 2013, 6 (06): : 1327 - 1420
  • [48] Solutions of Nonlinear Schrodinger Equation with Two Potential Wells in Linear/Nonlinear Media
    Gerasimchuk, V. S.
    Gerasimchuk, I. V.
    Dranik, N. I.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2016, 12 (02) : 168 - 176
  • [49] The nonlinear Schrodinger equation with a potential
    Germain, Pierre
    Pusateri, Fabio
    Rousset, Frederic
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (06): : 1477 - 1530
  • [50] Stationary nonlinear Schrodinger equation on simplest graphs
    Sabirov, K. K.
    Sobirov, Z. A.
    Babajanov, D.
    Matrasulov, D. U.
    PHYSICS LETTERS A, 2013, 377 (12) : 860 - 865