Roadmap of Spin-Orbit Torques

被引:329
|
作者
Shao, Qiming [1 ]
Li, Peng [2 ]
Liu, Luqiao [3 ]
Yang, Hyunsoo [4 ]
Fukami, Shunsuke [5 ]
Razavi, Armin [6 ]
Wu, Hao [6 ]
Wang, Kang [6 ]
Freimuth, Frank [7 ,8 ]
Mokrousov, Yuriy [7 ,8 ]
Stiles, Mark D. [9 ]
Emori, Satoru [10 ]
Hoffmann, Axel [11 ]
Akerman, Johan [12 ]
Roy, Kaushik [13 ]
Wang, Jian-Ping [14 ]
Yang, See-Hun [15 ]
Garello, Kevin [16 ,17 ]
Zhang, Wei [18 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
[2] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
[3] MIT, Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
[5] Tohoku Univ, Res Inst Elect Commun, Sendai, Miyagi 9808577, Japan
[6] Univ Calif Los Angeles, Dept Elect & Comp Engn, Los Angeles, CA 90095 USA
[7] Forschungszentrum Julich, Peter Grunberg Inst, D-52425 Julich, Germany
[8] Johannes Gutenberg Univ Mainz, Inst Phys, D-55128 Mainz, Germany
[9] NIST, Alternat Comp Grp, Gaithersburg, MD 20899 USA
[10] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[11] Univ Illinois, Dept Mat Sci & Engn, Champaign, IL 61820 USA
[12] Univ Gothenburg, Phys Dept, S-40530 Gothenburg, Sweden
[13] Purdue Univ, Dept Elect & Comp Engn, W Lafayette, IN 47907 USA
[14] Univ Minnesota, Elect & Comp Engn Dept, Minneapolis, MN 55455 USA
[15] IBM Res Almaden, San Jose, CA 95120 USA
[16] IMEC, B-3001 Leuven, Belgium
[17] Univ Grenoble Alpes, CEA, CNRS, Grenoble INP,SPINTEC, F-38000 Grenoble, France
[18] Oakland Univ, Phys Dept, Rochester, MI 48309 USA
基金
美国国家科学基金会; 日本学术振兴会;
关键词
Magnetic devices; magnetic materials; magnetic memory; spin-orbit torques (SOTs); ELECTRIC-FIELD CONTROL; TO-CHARGE CONVERSION; FERROMAGNETIC-RESONANCE LINEWIDTH; CURRENT-DRIVEN DYNAMICS; ROOM-TEMPERATURE; TOPOLOGICAL INSULATOR; MAGNETIC INSULATOR; PERPENDICULAR MAGNETIZATION; THIN-FILMS; SOT-MRAM;
D O I
10.1109/TMAG.2021.3078583
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spin-orbit torque (SOT) is an emerging technology that enables the efficient manipulation of spintronic devices. The initial processes of interest in SOTs involved electric fields, spin-orbit coupling, conduction electron spins, and magnetization. More recently, interest has grown to include a variety of other processes that include phonons, magnons, or heat. Over the past decade, many materials have been explored to achieve a larger SOT efficiency. Recently, holistic design to maximize the performance of SOT devices has extended material research from a nonmagnetic layer to a magnetic layer. The rapid development of SOT has spurred a variety of SOT-based applications. In this article, we first review the theories of SOTs by introducing the various mechanisms thought to generate or control SOTs, such as the spin Hall effect, the Rashba-Edelstein effect, the orbital Hall effect, thermal gradients, magnons, and strain effects. Then, we discuss the materials that enable these effects, including metals, metallic alloys, topological insulators, 2-D materials, and complex oxides. We also discuss the important roles in SOT devices of different types of magnetic layers, such as magnetic insulators, antiferromagnets, and ferrimagnets. Afterward, we discuss device applications utilizing SOTs. We discuss and compare three- and two-terminal SOT-magnetoresistive random access memories (MRAMs); we mention various schemes to eliminate the need for an external field. We provide technological application considerations for SOT-MRAM and give perspectives on SOT-based neuromorphic devices and circuits. In addition to SOT-MRAM, we present SOT-based spintronic terahertz generators, nano-oscillators, and domain-wall and skyrmion racetrack memories. This article aims to achieve a comprehensive review of SOT theory, materials, and applications, guiding future SOT development in both the academic and industrial sectors.
引用
收藏
页数:39
相关论文
共 50 条
  • [41] Spin-orbit torques in ultrathin ferromagnetic metal layers
    Mihai Miron, Ioan
    Gaudin, Gilles
    Auffret, Stephane
    Rodmacq, Bernard
    Schuhl, Alain
    Pizzini, Stefania
    Vogel, Jan
    Gambardella, Pietro
    SPINTRONICS III, 2010, 7760
  • [42] Intraband and interband spin-orbit torques in noncentrosymmetric ferromagnets
    Li, Hang
    Gao, H.
    Zarbo, Liviu P.
    Vyborny, K.
    Wang, Xuhui
    Garate, Ion
    Dogan, Fatih
    Cejchan, A.
    Sinova, Jairo
    Jungwirth, T.
    Manchon, Aurelien
    PHYSICAL REVIEW B, 2015, 91 (13):
  • [43] Spin-Orbit Coupling in Single-Layer Ferrimagnets: Direct Observation of Spin-Orbit Torques and Chiral Spin Textures
    Krishnia, Sachin
    Haltz, Eloi
    Berges, Leo
    Aballe, Lucia
    Foerster, Michael
    Bocher, Laura
    Weil, Raphael
    Thiaville, Andre
    Sampaio, Joao
    Mougin, Alexandra
    PHYSICAL REVIEW APPLIED, 2021, 16 (02):
  • [44] Engineering the dynamics of topological spin textures by anisotropic spin-orbit torques
    Hanke, J. -P.
    Freimuth, F.
    Dupe, B.
    Sinova, J.
    Klaeui, M.
    Mokrousov, Y.
    PHYSICAL REVIEW B, 2020, 101 (01)
  • [45] Spin-Orbit Torques in Heavy-Metal-Ferromagnet Bilayers with Varying Strengths of Interfacial Spin-Orbit Coupling
    Zhu, Lijun
    Ralph, D. C.
    Buhrman, R. A.
    PHYSICAL REVIEW LETTERS, 2019, 122 (07)
  • [46] Inductive detection of inverse spin-orbit torques in magnetic heterostructures
    Yaqoob, Misbah
    Kammerbauer, Fabian
    Saunderson, Tom G.
    Vasyuchka, Vitaliy I.
    Go, Dongwook
    Al-Hamdo, Hassan
    Jakob, Gerhard
    Mokrousov, Yuriy
    Klaeui, Mathias
    Weiler, Mathias
    PHYSICAL REVIEW B, 2024, 110 (10)
  • [47] Spin-orbit torques in normal metal/Nb/ferromagnet heterostructures
    Lee, Min Hyeok
    Go, Gyungchoon
    Kim, Yong Jin
    Cha, In Ho
    Kim, Gyu Won
    Kim, Taehyun
    Lee, Kyung-Jin
    Kim, Young Keun
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [48] Spin-orbit torques and magnetotransport properties of α-Sn and β-Sn heterostructures
    Binda, Federico
    Avci, Can Onur
    Alvarado, Santos Francisco
    Noel, Paul
    Lambert, Charles-Henri
    Gambardella, Pietro
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [49] Spin-Orbit Torques in Transition Metal Dichalcogenide/Ferromagnet Heterostructures
    Hidding, Jan
    Guimaraes, Marcos H. D.
    FRONTIERS IN MATERIALS, 2020, 7
  • [50] Semirealistic tight-binding model for spin-orbit torques
    Manchon, Guilhem
    Ghosh, Sumit
    Barreteau, Cyrille
    Manchon, Aurelien
    PHYSICAL REVIEW B, 2020, 101 (17)