k-GENERALIZED FIBONACCI NUMBERS WHICH ARE CONCATENATIONS OF TWO REPDIGITS

被引:0
|
作者
Alahmadi, Adel [1 ]
Altassan, Alaa [1 ]
Luca, Florian [1 ,2 ,3 ]
Shoaib, Hatoon [1 ]
机构
[1] King Abdulaziz Univ, Res Grp Algebra Struct & Applicat, Jeddah, Saudi Arabia
[2] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
[3] UNAM, Ctr Ciencias Matemat, Morelia, Michoacan, Mexico
关键词
k-Fibonacci numbers; applications of Baker's method; digits;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the k-generalized Fibonacci numbers that are concatenations of two repdigits have at most four digits.
引用
收藏
页码:29 / 46
页数:18
相关论文
共 50 条
  • [41] Powers of Fibonacci numbers which are products of repdigits
    Lourenco, Abel medina
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2023, 14 (01): : 205 - 215
  • [42] Fibonacci or Lucas Numbers Which are Products of Two Repdigits in Base b
    Zafer Şiar
    Refik Keskin
    Fatih Erduvan
    Bulletin of the Brazilian Mathematical Society, New Series, 2021, 52 : 1025 - 1040
  • [43] Fibonacci or Lucas Numbers Which are Products of Two Repdigits in Base b
    Siar, Zafer
    Keskin, Refik
    Erduvan, Fatih
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (04): : 1025 - 1040
  • [44] ON THE INTERSECTION OF TWO DISTINCT k-GENERALIZED FIBONACCI SEQUENCES
    Marques, Diego
    MATHEMATICA BOHEMICA, 2012, 137 (04): : 403 - 413
  • [45] AN EXPONENTIAL DIOPHANTINE EQUATION RELATED TO THE SUM OF POWERS OF TWO CONSECUTIVE k-GENERALIZED FIBONACCI NUMBERS
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    COLLOQUIUM MATHEMATICUM, 2014, 137 (02) : 171 - 188
  • [46] Pell and Pell-Lucas numbers which are concatenations of three repdigits
    Erduvan, Fatih
    Duman, Merve Guney
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [47] k-Fibonacci and k-Lucas Numbers as Product of Two Repdigits
    Rihane, Salah Eddine
    RESULTS IN MATHEMATICS, 2021, 76 (04)
  • [48] k-Fibonacci and k-Lucas Numbers as Product of Two Repdigits
    Salah Eddine Rihane
    Results in Mathematics, 2021, 76
  • [49] Gapsets and the k-generalized Fibonacci sequences
    Almeida Filho, Gilberto B.
    Bernardini, Matheus
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2024, 34 (02) : 227 - 249
  • [50] ON THE DISCRIMINANT OF THE k-GENERALIZED FIBONACCI POLYNOMIAL
    Luca, Florian
    FIBONACCI QUARTERLY, 2021, 59 (04): : 298 - 307