Supremum topological sequence entropy of circle maps

被引:3
|
作者
Kuang, Rui [1 ]
Yang, Yini [2 ]
机构
[1] South China Univ Technol, Dept Math, Guangzhou 510641, Guangdong, Peoples R China
[2] Shantou Univ, Dept Math, Shantou 515063, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Circle maps; Supremum topological sequence entropy; Topological sequence entropy pair; Non-separated pair; DYNAMICS;
D O I
10.1016/j.topol.2021.107670
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper some formulas of supremum topological sequence entropy h(top)(infinity)(f) are investigated for circle maps. If f is a circle map then h(top)(infinity)(f) = h(top)(infinity)(f|(<(E(f))over bar>)), where <(E(f))over bar> is the closure of the set of eventually periodic points of f; If fis a circle map with zero topological entropy and Fix(f) not equal empty set then h(top)(infinity)(f|vertical bar(Omega(f))) = 0, where Omega(f) denotes the set of non-wandering points of f. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] TOPOLOGICAL PRESSURE AND TOPOLOGICAL ENTROPY OF A SEMIGROUP OF MAPS
    Ma, Dongkui
    Wu, Min
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (02) : 545 - 557
  • [22] Topological Persistence for Circle-Valued Maps
    Burghelea, Dan
    Dey, Tamal K.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2013, 50 (01) : 69 - 98
  • [23] Topological Persistence for Circle-Valued Maps
    Dan Burghelea
    Tamal K. Dey
    Discrete & Computational Geometry, 2013, 50 : 69 - 98
  • [24] Topological entropy of multivalued maps in topological spaces and hyperspaces
    Andres, Jan
    Ludvik, Pavel
    CHAOS SOLITONS & FRACTALS, 2022, 160
  • [25] Topology and topological sequence entropy
    Snoha, L'ubomir
    Ye, Xiangdong
    Zhang, Ruifeng
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (02) : 205 - 296
  • [26] Topology and topological sequence entropy
    L’ubomír Snoha
    Xiangdong Ye
    Ruifeng Zhang
    Science China Mathematics, 2020, 63 : 205 - 296
  • [27] Topology and topological sequence entropy
    L'ubomír Snoha
    Xiangdong Ye
    Ruifeng Zhang
    ScienceChina(Mathematics), 2020, 63 (02) : 205 - 296
  • [28] A Remark on Topological Sequence Entropy
    Wu, Xinxing
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (07):
  • [29] Topological Sequence Entropy and Chaos
    Liu, Xin
    Wang, Huoyun
    Fu, Heman
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (07):
  • [30] RETRACTION: Statistical Convergent Topological Sequence Entropy Maps of the Circle (vol 6, pg 257, 2004) (Retraction of Vol 6, Pg 257, 2004)
    Knuth, Kevin H.
    ENTROPY, 2014, 16 (02)