Fast Nonparametric Clustering of Structured Time-Series

被引:36
|
作者
Hensman, James [1 ,2 ]
Rattray, Magnus [3 ]
Lawrence, Neil D. [1 ,2 ]
机构
[1] Univ Sheffield, Dept Comp Sci, Sheffield S10 2TN, S Yorkshire, England
[2] Univ Sheffield, Sheffield Inst Translat Neurosci, Sheffield S10 2TN, S Yorkshire, England
[3] Univ Manchester, Fac Life Sci, Manchester, Lancs, England
基金
英国生物技术与生命科学研究理事会; 英国医学研究理事会;
关键词
Variational Bayes; Gaussian processes; structured time series; gene expression; GENE-EXPRESSION; VARIATIONAL INFERENCE; MODELS;
D O I
10.1109/TPAMI.2014.2318711
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this publication, we combine two Bayesian nonparametric models: the Gaussian Process (GP) and the Dirichlet Process (DP). Our innovation in the GP model is to introduce a variation on the GP prior which enables us to model structured time-series data, i.e., data containing groups where we wish to model inter-and intra-group variability. Our innovation in the DP model is an implementation of a new fast collapsed variational inference procedure which enables us to optimize our variational approximation significantly faster than standard VB approaches. In a biological time series application we show how our model better captures salient features of the data, leading to better consistency with existing biological classifications, while the associated inference algorithm provides a significant speed-up over EM-based variational inference.
引用
收藏
页码:383 / 393
页数:11
相关论文
共 50 条
  • [41] Gene clustering for time-series microarray with production outputs
    Chira, Camelia
    Sedano, Javier
    Villar, Jose R.
    Camara, Monica
    Prieto, Carlos
    SOFT COMPUTING, 2016, 20 (11) : 4301 - 4312
  • [42] A methodology for index tracking based on time-series clustering
    Focardi, SM
    Fabozzi, FJ
    QUANTITATIVE FINANCE, 2004, 4 (04) : 417 - 425
  • [43] A Sparse Regression Mixture Model for Clustering Time-Series
    Blekas, K.
    Galatsanos, N.
    Likas, A.
    ARTIFICIAL INTELLIGENCE: THEORIES, MODELS AND APPLICATIONS, SETN 2008, 2008, 5138 : 64 - 72
  • [44] Distance measures for effective clustering of ARIMA time-series
    Kalpakis, K
    Gada, D
    Puttagunta, V
    2001 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2001, : 273 - 280
  • [45] CSMVC: A Multiview Method for Multivariate Time-Series Clustering
    He, Guoliang
    Wang, Han
    Liu, Shenxiang
    Zhang, Bo
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (12) : 13425 - 13437
  • [46] Mobile Networks Classification Based on Time-Series Clustering
    Lu, Shun
    Qian, Bing
    Zhao, Long-Gang
    Sun, Qiong
    2022 IEEE 5TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION ENGINEERING, ICECE, 2022, : 65 - 71
  • [47] Time-Series Clustering Based on the Characterization of Segment Typologies
    Guijo-Rubio, David
    Manuel Duran-Rosal, Antonio
    Antonio Gutierrez, Pedro
    Troncoso, Alicia
    Hervas-Martinez, Cesar
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (11) : 5409 - 5422
  • [48] Time-Series Clustering in R Using the dtwclust Package
    Sarda-Espinosa, Alexis
    R JOURNAL, 2019, 11 (01): : 22 - 43
  • [49] Odyssey: An Engine Enabling The Time-Series Clustering Journey
    Paparrizos, John
    Reddy, Sai Prasanna Teja
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2023, 16 (12): : 4066 - 4069
  • [50] Gene clustering for time-series microarray with production outputs
    Camelia Chira
    Javier Sedano
    José R. Villar
    Monica Camara
    Carlos Prieto
    Soft Computing, 2016, 20 : 4301 - 4312