Thermal Interface Enhancement via Inclusion of an Adhesive Layer Using Plasma-Enhanced Atomic Layer Deposition

被引:9
|
作者
Kwon, Heungdong [1 ]
Perez, Christopher [1 ]
Kim, Hyojin K. [1 ]
Asheghi, Mehdi [1 ]
Park, Woosung [2 ]
Goodson, Kenneth E. [1 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Sookmyung Womens Univ, Div Mech Syst Engn, Seoul 04310, South Korea
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[4] Huang Bldg,Deans Off Suite, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
atomic layer deposition; time-domain thermoreflectance; bonding strength; thermal boundary conductance; plasma treatment; platinum; nucleation layer; CHEMICAL FUNCTIONALIZATION; BOUNDARY CONDUCTANCE; ENERGY-DISSIPATION; SURFACE-ENERGY; HEAT-TRANSPORT; GRAPHENE; OXIDE; CRYSTALLIZATION; FUNDAMENTALS; TIO2;
D O I
10.1021/acsami.0c19197
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Interfaces govern thermal transport in a variety of nanostructured systems such as FinFETs, interconnects, and vias. Thermal boundary resistances, however, critically depend on the choice of materials, nanomanufacturing processes and conditions, and the planarity of interfaces. In this work, we study the interfacial thermal transport between a nonreactive metal (Pt) and a dielectric by engineering two differing bonding characters: (i) the mechanical adhesion/van der Waals bonding offered by the physical vapor deposition (PVD) and (ii) the chemical bonding generated by plasma-enhanced atomic layer deposition (PEALD). We introduce 40-cycle (similar to 2 nm thick), nearly continuous PEALD Pt films between 98 nm PVD Pt and dielectric materials (8.0 nm TiO2/Si and 11.0 nm Al2O3/Si) treated with either O-2 or O-2 + H-2 plasma to modulate their bonding strengths. By correlating the treatments through thermal transport measurements using time-domain thermoreflectance (TDTR), we find that the thermal boundary resistances are consistently reduced with the same increased treatment complexity that has been demonstrated in the literature to enhance mechanical adhesion. For samples on TiO2 (Al2O3), reductions in thermal resistance are at least 4% (10%) compared to those with no PEALD Pt at all, but could be as large as 34% (42%) given measurement uncertainties that could be improved with thinner nucleation layers. We suspect the O-2 plasma generates stronger covalent bonds to the substrate, while the H-2 plasma strips the PEALD Pt of contaminants such as carbon that gives rise to a less thermally resistive heat conduction pathway.
引用
收藏
页码:21905 / 21913
页数:9
相关论文
共 50 条
  • [21] Plasma-enhanced atomic layer deposition of Co on metal surfaces
    Yoon, Jaehong
    Song, Jeong-Gyu
    Kim, Hyungjun
    Lee, Han-Bo-Ram
    SURFACE & COATINGS TECHNOLOGY, 2015, 264 : 60 - 65
  • [22] Fabrication of iron carbide by plasma-enhanced atomic layer deposition
    Xu Tian
    Xiangyu Zhang
    Yulian Hu
    Bowen Liu
    Yuxia Yuan
    Lizhen Yang
    Qiang Chen
    Zhongwei Liu
    Journal of Materials Research, 2020, 35 : 813 - 821
  • [23] Plasma-enhanced atomic layer deposition of BaTiO3
    Schindler, Peter
    Kim, Yongmin
    Thian, Dickson
    An, Jihwan
    Prinz, Fritz B.
    SCRIPTA MATERIALIA, 2016, 111 : 106 - 109
  • [24] Nitrogen Plasma Etching and Surface Passivation of GaAs via Plasma-Enhanced Atomic Layer Deposition
    Fang, Dan
    Chen, Fang
    Fang, Xuan
    Zhang, Haixi
    Li, Jinhua
    Wang, Xiaohua
    Ma, Xiaohui
    Wei, Zhipeng
    INTEGRATED FERROELECTRICS, 2021, 219 (01) : 55 - 61
  • [25] Plasma-enhanced atomic layer deposition of superconducting niobium nitride
    Sowa, Mark J.
    Yemane, Yonas
    Zhang, Jinsong
    Palmstrom, Johanna C.
    Ju, Ling
    Strandwitz, Nicholas C.
    Prinz, Fritz B.
    Provine, J.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2017, 35 (01):
  • [26] Plasma-Enhanced Atomic Layer Deposition of Silver Thin Films
    Kariniemi, Maarit
    Niinisto, Jaakko
    Hatanpaa, Timo
    Kemell, Marianna
    Sajavaara, Timo
    Ritala, Mikko
    Leskela, Markku
    CHEMISTRY OF MATERIALS, 2011, 23 (11) : 2901 - 2907
  • [27] Comparison of thermal and plasma-enhanced atomic layer deposition of niobium oxide thin films
    Basuvalingam, Saravana Balaji
    Macco, Bart
    Knoops, Harm C. M.
    Melskens, Jimmy
    Kessels, Wilhelmus M. M.
    Bol, Ageeth A.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (04):
  • [28] A rotary reactor for thermal and plasma-enhanced atomic layer deposition on powders and small objects
    Longrie, Delphine
    Deduytsche, Davy
    Haemers, Jo
    Driesen, Kris
    Detavernier, Christophe
    SURFACE & COATINGS TECHNOLOGY, 2012, 213 : 183 - 191
  • [29] Tunable Dielectric and Thermal Properties of Oxide Dielectrics via Substrate Biasing in Plasma-Enhanced Atomic Layer Deposition
    Kim, Yoonjin
    Kwon, Heungdong
    Han, Hyun Soo
    Kim, Hyo Jin K.
    Kim, Brian S. Y.
    Lee, Byung Chul
    Lee, Joohyun
    Asheghi, Mehdi
    Prinz, Fritz B.
    Goodson, Kenneth E.
    Lim, Jongwoo
    Sim, Uk
    Park, Woosung
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (40) : 44912 - 44918
  • [30] Plasma-enhanced atomic layer deposition of Ir thin films for copper adhesion layer
    Jeong, Seong-Jun
    Shin, Yu-Ri
    Kwack, Won-Sub
    Lee, Hyung Woo
    Jeong, Young-Keun
    Kim, Doo-In
    Kim, Hyun Chang
    Kwon, Se-Hun
    SURFACE & COATINGS TECHNOLOGY, 2011, 205 (21-22): : 5009 - 5013