Thermal Interface Enhancement via Inclusion of an Adhesive Layer Using Plasma-Enhanced Atomic Layer Deposition

被引:9
|
作者
Kwon, Heungdong [1 ]
Perez, Christopher [1 ]
Kim, Hyojin K. [1 ]
Asheghi, Mehdi [1 ]
Park, Woosung [2 ]
Goodson, Kenneth E. [1 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] Sookmyung Womens Univ, Div Mech Syst Engn, Seoul 04310, South Korea
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[4] Huang Bldg,Deans Off Suite, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
atomic layer deposition; time-domain thermoreflectance; bonding strength; thermal boundary conductance; plasma treatment; platinum; nucleation layer; CHEMICAL FUNCTIONALIZATION; BOUNDARY CONDUCTANCE; ENERGY-DISSIPATION; SURFACE-ENERGY; HEAT-TRANSPORT; GRAPHENE; OXIDE; CRYSTALLIZATION; FUNDAMENTALS; TIO2;
D O I
10.1021/acsami.0c19197
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Interfaces govern thermal transport in a variety of nanostructured systems such as FinFETs, interconnects, and vias. Thermal boundary resistances, however, critically depend on the choice of materials, nanomanufacturing processes and conditions, and the planarity of interfaces. In this work, we study the interfacial thermal transport between a nonreactive metal (Pt) and a dielectric by engineering two differing bonding characters: (i) the mechanical adhesion/van der Waals bonding offered by the physical vapor deposition (PVD) and (ii) the chemical bonding generated by plasma-enhanced atomic layer deposition (PEALD). We introduce 40-cycle (similar to 2 nm thick), nearly continuous PEALD Pt films between 98 nm PVD Pt and dielectric materials (8.0 nm TiO2/Si and 11.0 nm Al2O3/Si) treated with either O-2 or O-2 + H-2 plasma to modulate their bonding strengths. By correlating the treatments through thermal transport measurements using time-domain thermoreflectance (TDTR), we find that the thermal boundary resistances are consistently reduced with the same increased treatment complexity that has been demonstrated in the literature to enhance mechanical adhesion. For samples on TiO2 (Al2O3), reductions in thermal resistance are at least 4% (10%) compared to those with no PEALD Pt at all, but could be as large as 34% (42%) given measurement uncertainties that could be improved with thinner nucleation layers. We suspect the O-2 plasma generates stronger covalent bonds to the substrate, while the H-2 plasma strips the PEALD Pt of contaminants such as carbon that gives rise to a less thermally resistive heat conduction pathway.
引用
收藏
页码:21905 / 21913
页数:9
相关论文
共 50 条
  • [1] Plasma-Enhanced Atomic Layer Deposition of Ni
    Lee, Han-Bo-Ram
    Bang, Sung-Hwan
    Kim, Woo-Hee
    Gu, Gil Ho
    Lee, Young Kuk
    Chung, Taek-Mo
    Kim, Chang Gyoun
    Park, Chan Gyung
    Kim, Hyungjun
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (05) : 05FA111 - 05FA114
  • [2] Topographical selective deposition: A comparison between plasma-enhanced atomic layer deposition/sputtering and plasma-enhanced atomic layer deposition/quasi-atomic layer etching approaches
    Jaffal, Moustapha
    Yeghoyan, Taguhi
    Lefevre, Gauthier
    Gassilloud, Remy
    Posseme, Nicolas
    Vallee, Christophe
    Bonvalot, Marceline
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2021, 39 (03):
  • [3] Crystalline AlN Interfacial Layer on GaN Using Plasma-Enhanced Atomic Layer Deposition
    Hwang, Il-Hwan
    Kang, Myoung-Jin
    Cha, Ho-Young
    Seo, Kwang-Seok
    CRYSTALS, 2021, 11 (04)
  • [4] Atomistic Simulations of Plasma-Enhanced Atomic Layer Deposition
    Becker, Martin
    Sierka, Marek
    MATERIALS, 2019, 12 (16)
  • [5] Plasma-enhanced atomic layer deposition of zinc phosphate
    Dobbelaere, T.
    Minjauw, M.
    Ahmad, T.
    Vereecken, P. M.
    Detavernier, C.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2016, 444 : 43 - 48
  • [6] Plasma-enhanced atomic layer deposition of tungsten nitride
    Sowa, Mark J.
    Yemane, Yonas
    Prinz, Fritz B.
    Provine, J.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (05):
  • [7] Plasma-enhanced atomic layer deposition for plasmonic TiN
    Otto, Lauren M.
    Hammack, Aaron T.
    Aloni, Shaul
    Ogletree, D. Frank
    Olynick, Deirdre L.
    Dhuey, Scott
    Stadler, Bethanie J. H.
    Schwartzberg, Adam M.
    NANOPHOTONIC MATERIALS XIII, 2016, 9919
  • [8] Plasma-enhanced atomic layer deposition of vanadium nitride
    Kozen, Alexander C.
    Sowa, Mark J.
    Ju, Ling
    Strandwitz, Nicholas C.
    Zeng, Guosong
    Babuska, Tomas F.
    Hsain, Zakaria
    Krick, Brandon A.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2019, 37 (06):
  • [9] Enhancement of barrier properties of aluminum oxide layer by optimization of plasma-enhanced atomic layer deposition process
    Lee, Jong Geol
    Kim, Hyun Gi
    Kim, Sung Soo
    Thin Solid Films, 2013, 535 (01) : 515 - 519
  • [10] Enhancement of barrier properties of aluminum oxide layer by optimization of plasma-enhanced atomic layer deposition process
    Lee, Jong Geol
    Kim, Hyun Gi
    Kim, Sung Soo
    THIN SOLID FILMS, 2013, 534 : 515 - 519