Are We Modelling Spatially Varying Processes or Non-linear Relationships?

被引:14
|
作者
Sachdeva, Mehak [1 ]
Fotheringham, A. Stewart [1 ]
Li, Ziqi [2 ]
Yu, Hanchen [1 ]
机构
[1] Arizona State Univ, Spatial Anal Res Ctr, Sch Geog Sci Urban Planning, Tempe, AZ USA
[2] Univ Illinois, Dept Geog & Geog Informat Sci, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
GEOGRAPHICALLY WEIGHTED REGRESSION; IMPACTS;
D O I
10.1111/gean.12297
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Studies of spatially varying parameter estimates obtained in the calibration of various types of local statistical models are commonplace. The variation in such estimates is typically explained in terms of spatially varying processes. This paper highlights that an alternative explanation for spatially varying parameter estimates, in terms of non-linearity, should be examined prior to relating such variation to spatially varying processes. This can be achieved by a simple screening procedure which is described and demonstrated and which can easily be applied to the results of any local model. The problem is highlighted, and the solution demonstrated, with a set of simulated data and then with a real-world data set. The paper also highlights the obverse situation whereby the inappropriate application of a GAM produces spurious nonlinear results when the real relationships are linear but spatially varying.
引用
收藏
页码:715 / 738
页数:24
相关论文
共 50 条
  • [41] NON-LINEAR TRANSPORT PROCESSES - HYDRODYNAMICS
    OPPENHEIM, I
    LEVINE, RD
    PHYSICA A, 1979, 99 (03): : 383 - 402
  • [42] Extrapolations in non-linear autoregressive processes
    Andel, J
    Dupac, V
    KYBERNETIKA, 1999, 35 (03) : 383 - 389
  • [43] NON-LINEAR THERMODYNAMICS OF IRREVERSIBLE PROCESSES
    BAKHAREVA, IF
    DOKLADY AKADEMII NAUK SSSR, 1960, 135 (02): : 350 - 353
  • [44] Non-linear processes in the extreme ultraviolet
    Orfanos, I
    Makos, I
    Liontos, I
    Skantzakis, E.
    Major, B.
    Nayak, A.
    Dumergue, M.
    Kuehn, S.
    Kahaly, S.
    Varju, K.
    Sansone, G.
    Witzel, B.
    Kalpouzos, C.
    Nikolopoulos, L. A. A.
    Tzallas, P.
    Charalambidis, D.
    JOURNAL OF PHYSICS-PHOTONICS, 2020, 2 (04):
  • [45] NON-LINEAR TRANSFORMATIONS OF STOCHASTIC PROCESSES
    MULLER, PH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1966, 46 (01): : 76 - &
  • [46] FLUCTUATIONS AND NON-LINEAR IRREVERSIBLE PROCESSES
    GRABERT, H
    GREEN, MS
    PHYSICAL REVIEW A, 1979, 19 (04) : 1747 - 1756
  • [47] Correlated states in the non-linear processes
    Averbukh, BB
    Livashvily, AI
    Fundamental Problems of Optoelectronics and Microelectronics II, 2005, 5851 : 54 - 57
  • [48] Probabilistic non-linear registration with spatially adaptive regularisation
    Simpson, I. J. A.
    Cardoso, M. J.
    Modat, M.
    Cash, D. M.
    Woolrich, M. W.
    Andersson, J. L. R.
    Schnabel, J. A.
    Ourselin, S.
    MEDICAL IMAGE ANALYSIS, 2015, 26 (01) : 203 - 216
  • [49] On the density of systems of non-linear spatially homogeneous SPDEs
    Nualart, Eulalia
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2013, 85 (01) : 48 - 70
  • [50] Non-linear models: Where do we go next - Time varying parameter models?
    Granger, Clive W. J.
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2008, 12 (03):