REFERENCE-FREE DESPECKLING OF SYNTHETIC-APERTURE RADAR IMAGES USING A DEEP CONVOLUTIONAL NETWORK

被引:3
|
作者
Davis, T. [1 ]
Jain, V [1 ]
Ley, A. [1 ]
D'Hondt, O. [1 ]
Valade, S. [1 ,2 ,3 ]
Hellwich, O. [1 ]
机构
[1] Tech Univ Berlin, Comp Vis & Remote Sensing, Berlin, Germany
[2] GFZ German Res Ctr Geosci, Potsdam, Germany
[3] Univ Nacl Autonoma Mexico, Inst Geofis, Mexico City, DF, Mexico
关键词
Synthetic-Aperture Radar; Convolutional Neural Networks; Satellite Imaging; Noise2Noise; Despeckling; SAR;
D O I
10.1109/IGARSS39084.2020.9323293
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes a deep learning based method to despeckle SAR images that does not require noise-free reference data. Instead, our method exploits the redundancy between images of the same area at different times to train a residual convolutional neural network in a regression framework to predict speckle-free images. Moreover, thanks to end-to-end training of the network, our approach does not require explicit parameter tuning. Experiments show the relevance of our approach on Sentinel 1 images acquired over volcanic areas. The method is shown to compete well with well-known approaches such as the Lee filter and the more recent SAR-BM3D filter.
引用
收藏
页码:3908 / 3911
页数:4
相关论文
共 50 条
  • [41] CALIBRATION OF A POLARIMETRIC SYNTHETIC-APERTURE RADAR USING A KNOWN DISTRIBUTED TARGET
    SARABANDI, K
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (03): : 575 - 582
  • [42] Improved region convolutional neural network for ship detection in multiresolution synthetic aperture radar images
    Xiao, Qilin
    Cheng, Yun
    Xiao, Minlei
    Zhang, Jun
    Shi, Hongji
    Niu, Lihui
    Ge, Chenguang
    Lang, Haitao
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (22):
  • [43] Study of Coniferous Forests Using Multifrequency Polarimetric Synthetic-Aperture Radar
    A. A. Kalinkevich
    B. G. Kutuza
    V. Yu. Manakov
    V. A. Plyushchev
    Journal of Communications Technology and Electronics, 2019, 64 : 1339 - 1347
  • [44] External Calibration of a Polarimetric Synthetic-Aperture Radar for a Limited Number of Types of Reference Reflectors
    Zakharov, A. I.
    Sorochinskii, M. V.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2010, 55 (10) : 1102 - 1107
  • [45] Quiet-zone evaluation using a spherical synthetic-aperture radar
    Wittmann, RC
    Black, DN
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 148 - 151
  • [46] External calibration of a polarimetric synthetic-aperture radar for a limited number of types of reference reflectors
    A. I. Zakharov
    M. V. Sorochinskii
    Journal of Communications Technology and Electronics, 2010, 55 : 1102 - 1107
  • [47] Deep Learning Methods For Synthetic Aperture Radar Image Despeckling: An Overview Of Trends And Perspectives
    Fracastoro, Giulia
    Magli, Enrico
    Poggi, Giovanni
    Scarpa, Giuseppe
    Valsesia, Diego
    Verdoliva, Luisa
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (02) : 29 - 51
  • [48] Generation of almaz-1 digital synthetic-aperture radar images of the ground surface
    Neronskii, L.B.
    Kobernichenko, V.G.
    Zraenko, S.M.
    Soviet Journal of Remote Sensing (English translation of Issledovanie Zemli iz Kosmosa), 1994, 11 (04):
  • [49] RESOLUTION OF A CONTROVERSY SURROUNDING THE FOCUSING MECHANISMS OF SYNTHETIC-APERTURE RADAR IMAGES OF OCEAN WAVES
    OUCHI, K
    BURRIDGE, DA
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (05): : 1004 - 1016
  • [50] Despeckling Algorithm for Remote Sensing Synthetic Aperture Radar Images using Multi-Scale Curvelet Transform
    Kooshesh, Monireh
    Akbarizadeh, Gholamreza
    2015 INTERNATIONAL SYMPOSIUM ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2015, : 228 - 233