Effects of soil organic matter on pH-dependent phosphate sorption by soils

被引:57
|
作者
Hiradate, S [1 ]
Uchida, N
机构
[1] NIAES, Dept Biol Safety Sci, Tsukuba, Ibaraki 3058604, Japan
[2] Environm Res Ctr, Tsukuba, Ibaraki 3050857, Japan
关键词
competitive sorption; Langmuir equation; ligand exchange; phosphate sorption; soil organic matter;
D O I
10.1080/00380768.2004.10408523
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Effects of soil organic matter (SOM) on P sorption of soils still remain to be clarified because contradictory results have been reported in the literature. In the present study, pH-dependent P sorption on an allophanic Andisol and an alluvial soil was compared with that on hydrogen peroxide (H(2)O(2))-treated, acid-oxalate (OX)-treated, and dithionite-citrate-bicarbonate (DCB)-treated soils. Removal of SOM increased or decreased P sorption depending on the equilibrium pH values and soil types. In the H(2)O(2)-, OX-, and DCB-treated soils, P sorption was pH-dependent, but this trend was not conspicuous in the untreated soils. It is likely that SOM affects P sorption of soils through three factors, competitive sorption, inhibition of polymerization and crystallization of metals such as Al and Fe, and flexible structure of metal-SOM complexes. As a result, the number of available sites for P sorption would remain relatively constant in the wide range of equilibrium pH values in the presence of SOM. The P sorption characteristics were analyzed at constant equilibrium pH values (4.0 to 7.0) using the Langmuir equation as a local isotherm. The maximum number of available sites for P sorption (Q(max)) was pH-dependent in the H(2)O(2)-, OX-, and DCB-treated soils, while this trend was not conspicuous in the untreated soils. Affinity constants related to binding strength (K) were less affected by the equilibrium pH values, soil types, and soil treatments, and were almost constant (log K approximate to 4.5). These findings support the hypothesis that SOM plays a role in keeping the number of available sites for P sorption relatively constant but does not affect the P sorption affinity. By estimating the Q(max) and K values as a function of equilibrium pH values, pH-dependent P sorption was well simulated with four or two adjustable parameters. This empirical model could be useful and convenient for a rough estimation of the pH-dependent P sorption of soils.
引用
收藏
页码:665 / 675
页数:11
相关论文
共 50 条
  • [31] Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sediments - 2. Effects of soil organic matter heterogeneity
    Weber, WJ
    Huang, WL
    Yu, H
    JOURNAL OF CONTAMINANT HYDROLOGY, 1998, 31 (1-2) : 149 - 165
  • [32] Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent
    Rivka B. Fidel
    David A. Laird
    Kurt A. Spokas
    Scientific Reports, 8
  • [33] Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent
    Fidel, Rivka B.
    Laird, David A.
    Spokas, Kurt A.
    SCIENTIFIC REPORTS, 2018, 8
  • [34] Kinetics of Ni Sorption in Soils: Roles of Soil Organic Matter and Ni Precipitation
    Shi, Zhenqing
    Peltier, Edward
    Sparks, Donald L.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (04) : 2212 - 2219
  • [35] SOIL ORGANIC-MATTER, EFFECTS ON SOILS AND CROPS
    JOHNSTON, AE
    SOIL USE AND MANAGEMENT, 1986, 2 (03) : 97 - 105
  • [36] SORPTION OF NITROAROMATICS TO SOILS: COMPARISON OF THE IMPORTANCE OF SOIL ORGANIC MATTER VERSUS CLAY
    Zhang, Dongmei
    Zhu, Dongqiang
    Chen, Wei
    ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 2009, 28 (07) : 1447 - 1454
  • [37] Role of Soil Organic Matter on the Sorption and Cosorption of Endosulfan and Chlorpyrifos on Agricultural Soils
    Tiwari, Manoj K.
    Guha, Saumyen
    JOURNAL OF ENVIRONMENTAL ENGINEERING-ASCE, 2012, 138 (04): : 426 - 435
  • [38] EFFECTS OF REDUCTION AND PH CHANGES ON PHOSPHATE SORPTION AND MOBILITY IN AN ACID SOIL
    HOLFORD, ICR
    PATRICK, WH
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 1979, 43 (02) : 292 - 297
  • [39] Effects of the Release of Soil Organic Matter on Phenanthrene Sorption by Sediments
    Zhang, Xiaoyan
    Wu, Yaoguo
    Hu, Sihai
    Li, Tao
    WATER ENVIRONMENT RESEARCH, 2016, 88 (04) : 346 - 354
  • [40] Soil Organic Matter Effects on Phosphorus Sorption: A Path Analysis
    Kang, Jihoon
    Hesterberg, Dean
    Osmond, Deanna L.
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2009, 73 (02) : 360 - 366