Disjoint Paired-Dominating sets in Cubic Graphs

被引:1
|
作者
Bacso, Gabor [1 ]
Bujtas, Csilla [2 ,3 ]
Tompkins, Casey [4 ,5 ]
Tuza, Zsolt [2 ,4 ]
机构
[1] Hungarian Acad Sci, Comp & Automat Inst, Budapest, Hungary
[2] Univ Pannonia, Fac Informat Technol, Veszprem, Hungary
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
[4] Hungarian Acad Sci, Alfred Renyi Inst Math, Budapest, Hungary
[5] Karlsruhe Inst Technol, Karlsruhe, Germany
基金
欧洲研究理事会;
关键词
Dominating set; Total dominating set; Paired-dominating set; Claw-free graph; Cubic graph; NUMBER;
D O I
10.1007/s00373-019-02063-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A paired-dominating set of a graph G is a dominating set D with the additional requirement that the induced subgraph G[D] contains a perfect matching. We prove that the vertex set of every claw-free cubic graph can be partitioned into two paired-dominating sets.
引用
收藏
页码:1129 / 1138
页数:10
相关论文
共 50 条
  • [31] ACYCLIC TOTAL DOMINATING SETS IN CUBIC GRAPHS
    Goddard, Wayne
    Henning, Michael A.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2019, 13 (01) : 73 - 84
  • [32] Minimum connected dominating sets of random cubic graphs
    Duckworth, W.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2002, 9
  • [33] Minimum independent dominating sets of random cubic graphs
    Duckworth, W
    Wormald, NC
    RANDOM STRUCTURES & ALGORITHMS, 2002, 21 (02) : 147 - 161
  • [34] Minimum Power Dominating Sets of Random Cubic Graphs
    Kang, Liying
    Wormald, Nicholas
    JOURNAL OF GRAPH THEORY, 2017, 85 (01) : 152 - 171
  • [35] Vertices Contained in all or in no Minimum Paired-Dominating Set of a Tree
    Michael A. Henning
    Michael D. Plummer
    Journal of Combinatorial Optimization, 2005, 10 : 283 - 294
  • [36] Vertices contained in all or in no minimum paired-dominating set of a tree
    Henning, MA
    Plummer, MD
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2005, 10 (03) : 283 - 294
  • [37] Remarks about disjoint dominating sets
    Henning, Michael A.
    Loewenstein, Christian
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2009, 309 (23-24) : 6451 - 6458
  • [38] γ-PAIRED DOMINATING GRAPHS OF CYCLES
    Eakawinrujee, Pannawat
    Trakultraipruk, Nantapath
    OPUSCULA MATHEMATICA, 2022, 42 (01) : 31 - 54
  • [39] γ-Paired Dominating Graphs of Paths
    Eakawinrujee, Pannawat
    Trakultraipruk, Nantapath
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (02): : 739 - 752
  • [40] Dominating Sets and Connected Dominating Sets in Dynamic Graphs
    Hjuler, Niklas
    Italiano, Giuseppe F.
    Parotsidis, Nikos
    Saulpic, David
    36TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2019), 2019,