Parameter Optimization of Support Vector Regression Using Harris Hawks Optimization

被引:22
|
作者
Setiawan, I. Nyoman [1 ]
Kurniawan, Robert [1 ]
Yuniarto, Budi [1 ]
Caraka, Rezzy Eko [2 ,3 ]
Pardamean, Bens [3 ,4 ]
机构
[1] Polytech Stat STIS, Computat Stat Dept, Jakarta 13330, Indonesia
[2] Chaoyang Univ Technol, Coll Informat, Dept Informat Management, Taichung, Taiwan
[3] Bina Nusantara Univ, Bioinformat & Data Sci Res Ctr, Jakarta 11530, Indonesia
[4] Bina Nusantara Univ, Comp Sci Dept, BINUS Grad Program, Comp Sci Program, Jakarta 11530, Indonesia
关键词
SVR; harris hawks optimization; parameter optimization; kernel; forecasting; MACHINES;
D O I
10.1016/j.procs.2021.12.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support Vector Regression (SVR) is often used in forecasting. Adjustment of parameters in the SVR affects the results of forecasting. This study aims to analyze the SVR method that is optimized using Harris Hawks Optimization (HHO), hereinafter referred to as HHO-SVR. The HHO-SVR was evaluated using five benchmark datasets to determine the performance of this method. The HHO process is also compared based on the type of kernel and other metaheuristic algorithms. The results showed that the HHO-SVR has almost the same performance as other methods but is less efficient in terms of time. In addition, the type of kernel also affects the process and results. (C) 2021 The Authors. Published by Elsevier B.V.
引用
收藏
页码:17 / 24
页数:8
相关论文
共 50 条
  • [21] Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms
    Mossa, Mahmoud A.
    Kamel, Omar Makram
    Sultan, Hamdy M.
    Diab, Ahmed A. Zaki
    Neural Computing and Applications, 2021, 33 (11) : 5555 - 5570
  • [22] Parameter estimation of PEMFC model based on Harris Hawks’ optimization and atom search optimization algorithms
    Mahmoud A. Mossa
    Omar Makram Kamel
    Hamdy M. Sultan
    Ahmed A. Zaki Diab
    Neural Computing and Applications, 2021, 33 : 5555 - 5570
  • [23] Parameter optimization of support vector regression based on sine cosine algorithm
    Li, Sai
    Fang, Huajing
    Liu, Xiaoyong
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 91 : 63 - 77
  • [24] Study on Construction of Kernel Function and Parameter Optimization in Support Vector Regression
    Tian, Jin
    MANUFACTURING, DESIGN SCIENCE AND INFORMATION ENGINEERING, VOLS I AND II, 2015, : 1434 - 1442
  • [25] Parameter estimation of PV solar cells and modules using Whippy Harris Hawks Optimization Algorithm
    Naeijian, Maryam
    Rahimnejad, Abolfazl
    Ebrahimi, S. Mohammadreza
    Pourmousa, Nafiseh
    Gadsden, S. Andrew
    ENERGY REPORTS, 2021, 7 : 4047 - 4063
  • [26] Sequential approximate optimization using support vector regression
    Lee, Yongbin
    Oh, Sangyup
    Park, Changhyun
    Choi, Dong-Hoon
    CJK-OSM 4: THE FOURTH CHINA-JAPAN-KOREA JOINT SYMPOSIUM ON OPTIMIZATION OF STRUCTURAL AND MECHANICAL SYSTEMS, 2006, : 171 - 176
  • [27] Compact Harris Hawks Optimization Algorithm
    Yu, Zhihao
    Du, Jialu
    Li, Guangqiang
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 1925 - 1930
  • [28] Chaotic Harris hawks optimization algorithm
    Gezici, Harun
    Livatyali, Haydar
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2022, 9 (01) : 216 - 245
  • [29] Harris hawks optimization: Algorithm and applications
    Heidari, Ali Asghar
    Mirjalili, Seyedali
    Faris, Hossam
    Aljarah, Ibrahim
    Mafarja, Majdi
    Chen, Huiling
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2019, 97 : 849 - 872
  • [30] Harris Hawks optimization with information exchange
    Qu, Chiwen
    He, Wei
    Peng, Xiangni
    Peng, Xiaoning
    APPLIED MATHEMATICAL MODELLING, 2020, 84 : 52 - 75