Calibration protocol for PARAMICS microscopic traffic simulation model: application of neuro-fuzzy approach

被引:10
|
作者
Reza, Imran [1 ]
Ratrout, Nedal T. [1 ]
Rahman, Syed Masiur [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Civil & Environm Engn, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Res Inst, Ctr Environm & Water, Dhahran 31261, Saudi Arabia
关键词
microscopic simulation model; PARAMICS model; microscopic model calibration; adaptive neuro-fuzzy inference system (ANFIS); Saudi Arabia; INFERENCE SYSTEM; NETWORK; ANFIS;
D O I
10.1139/cjce-2015-0435
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study investigated the challenges of calibration of the PARAMICS microscopic simulation model for the local traffic conditions in the Kingdom of Saudi Arabia. It proposed an adaptive neuro-fuzzy inference system (ANFIS) based calibration protocol for the PARAMICS model. The developed ANFIS model performs adequately in modeling the queue length as a function of two key calibration parameters, namely mean headway time and mean reaction time. The selected values of the calibration parameters obtained through the ANFIS modeling approach were used as the input parameters for the PARAMICS model. The error indices such as mean absolute errors and mean absolute percentage errors of the developed ANFIS model in predicting the queue lengths varied between 1.11 and 1.24, and between 3.44 and 4.06, respectively. The conformance of the PARAMICS output and the measured queue length indicates the validity of the proposed calibration protocol.
引用
收藏
页码:361 / 368
页数:8
相关论文
共 50 条
  • [1] TRAFFIC FLOW SIMULATION BY NEURO-FUZZY APPROACH
    Seitllari, Aksel
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON TRAFFIC AND TRANSPORT ENGINEERING (ICTTE), 2014, : 97 - 102
  • [2] An adaptive framework to enhance microscopic traffic modelling: an online neuro-fuzzy approach
    Kazemi, Reza
    Abdollahzade, Majid
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2016, 230 (13) : 1767 - 1779
  • [3] A neuro-fuzzy model for function point calibration
    HSBC Bank Canada, IT Department, Vancouver, BC, Canada
    不详
    不详
    WSEAS Trans. Inf. Sci. Appl., 2008, 1 (22-30):
  • [4] PARAMICS - Parallel microscopic simulation of road traffic
    Cameron, GDB
    Duncan, GID
    JOURNAL OF SUPERCOMPUTING, 1996, 10 (01): : 25 - 53
  • [5] CALIBRATION OF NONLINEAR ANALYTICAL SYSTEMS BY A NEURO-FUZZY APPROACH
    WALCZAK, B
    WEGSCHEIDER, W
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1994, 22 (02) : 199 - 207
  • [6] A Neuro-Fuzzy Approach to Road Traffic Congestion Prediction
    Gollapalli, Mohammed
    Atta-ur-Rahman
    Musleh, Dhiaa
    Ibrahim, Nehad
    Khan, Muhammad Adnan
    Abbas, Sagheer
    Atta, Ayesha
    Khan, Muhammad Aftab
    Farooqui, Mehwash
    Iqbal, Tahir
    Ahmed, Mohammed Salih
    Ahmed, Mohammed Imran B.
    Almoqbil, Dakheel
    Nabeel, Majd
    Omer, Abdullah
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 295 - 310
  • [7] Adaptive neuro-fuzzy model for traffic signs recognition
    Stojcic, Mirko
    Stjepanovic, Aleksandar
    Kostadinovic, Miroslav
    Kuzmic, Goran
    Banjanin, Milorad K.
    2020 19TH INTERNATIONAL SYMPOSIUM INFOTEH-JAHORINA (INFOTEH), 2020,
  • [8] Neuro-fuzzy approach for identification of traffic signs by infrared technology
    Marichal, G. N.
    Gonzalez, E. J.
    Acosta, L.
    Toledo, J.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2007, 4 (02): : 26 - +
  • [9] Neuro-fuzzy approach for identification of traffic signs by infrared technology
    Marichal, G.N.
    González, E.J.
    Acosta, L.
    Toledo, J.
    RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 2007, 4 (02): : 26 - 31
  • [10] Neuro-fuzzy techniques for traffic control
    Henry, JJ
    Farges, JL
    Gallego, JL
    CONTROL ENGINEERING PRACTICE, 1998, 6 (06) : 755 - 761