Towards Verifying Nonlinear Integer Arithmetic

被引:5
|
作者
Beame, Paul [1 ]
Liew, Vincent [1 ]
机构
[1] Univ Washington, Comp Sci & Engn, Seattle, WA 98195 USA
关键词
BIT-VECTORS; COMPLEXITY; SOLVER;
D O I
10.1007/978-3-319-63390-9_13
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We eliminate a key roadblock to efficient verification of nonlinear integer arithmetic using CDCL SAT solvers, by showing how to construct short resolution proofs for many properties of the most widely used multiplier circuits. Such short proofs were conjectured not to exist. More precisely, we give n(O(1)) size regular resolution proofs for arbitrary degree 2 identities on array, diagonal, and Booth multipliers and n(O(log n)) size proofs for these identities on Wallace tree multipliers.
引用
收藏
页码:238 / 258
页数:21
相关论文
共 50 条
  • [1] Toward Verifying Nonlinear Integer Arithmetic
    Beame, Paul
    Liew, Vincent
    JOURNAL OF THE ACM, 2019, 66 (03)
  • [2] Verifying a Solver for Linear Mixed Integer Arithmetic in Isabelle/HOL
    Bottesch, Ralph
    Haslbeck, Max W.
    Reynaud, Alban
    Thiemann, Rene
    NASA FORMAL METHODS (NFM 2020), 2020, 12229 : 233 - 250
  • [3] Solving Nonlinear Integer Arithmetic with MCSAT
    Jovanovic, Dejan
    VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION, VMCAI 2017, 2017, 10145 : 330 - 346
  • [4] Experimenting on Solving Nonlinear Integer Arithmetic with Incremental Linearization
    Cimatti, Alessandro
    Griggio, Alberto
    Irfan, Ahmed
    Roveri, Marco
    Sebastiani, Roberto
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2018, 2018, 10929 : 383 - 398
  • [5] Walking the number line: towards an enactive understanding of integer arithmetic
    Anton, Jacqueline
    Abrahamson, Dor
    INSTRUCTIONAL SCIENCE, 2025,
  • [6] Verifying Integer Programming Results
    Cheung, Kevin K. H.
    Gleixner, Ambros
    Steffy, Daniel E.
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2017, 2017, 10328 : 148 - 160
  • [7] Widening integer arithmetic
    Redwine, K
    Ramsey, N
    COMPILER CONSTRUCTION, PROCEEDINGS, 2004, 2985 : 232 - 249
  • [8] Modular Integer Arithmetic
    Schwarzweller, Christoph
    FORMALIZED MATHEMATICS, 2008, 16 (03): : 247 - 252
  • [9] Zeckendorf integer arithmetic
    Fenwick, P
    FIBONACCI QUARTERLY, 2003, 41 (05): : 405 - 413
  • [10] A Brief Introduction to Oracle's Use of ACL2 in Verifying Floating-point and Integer Arithmetic
    Kaufmann, Matt
    Rager, David L.
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2015, (192):