Widening integer arithmetic

被引:0
|
作者
Redwine, K [1 ]
Ramsey, N [1 ]
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
来源
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Some codes require computations to use fewer bits of precision than are normal for the target machine. For example, Java requires 32-bit arithmetic even on a 64-bit target. To run narrow codes on a wide target machine, we present a widening transformation. Almost every narrow operation can be widened by sign- or zero-extending the operands and using a target-machine instruction at its natural width. But extensions can sometimes be avoided, and our transformation avoids as many as possible. The key idea is knowing what each operation can accept in the high bits of its arguments and what it can guarantee about the high bits of its result. This knowledge is formalized using fill types, which drive the widening transformation.
引用
收藏
页码:232 / 249
页数:18
相关论文
共 50 条
  • [1] Widening arithmetic automata
    Bartzis, C
    Bultan, T
    COMPUTER AIDED VERIFICATION, 2004, 3114 : 321 - 333
  • [2] Modular Integer Arithmetic
    Schwarzweller, Christoph
    FORMALIZED MATHEMATICS, 2008, 16 (03): : 247 - 252
  • [3] Zeckendorf integer arithmetic
    Fenwick, P
    FIBONACCI QUARTERLY, 2003, 41 (05): : 405 - 413
  • [4] Integer and rational arithmetic on MasPar
    Jebelean, T
    DESIGN AND IMPLEMENTATION OF SYMBOLIC COMPUTATION SYSTEMS, 1996, 1128 : 162 - 173
  • [5] Taming the wrapping of integer arithmetic
    Simon, Axel
    King, Andy
    STATIC ANALYSIS, PROCEEDINGS, 2007, 4634 : 121 - +
  • [6] Integer points on arithmetic surfaces
    Autissier, P
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 531 : 201 - 235
  • [7] INTEGER POINTS IN ARITHMETIC SEQUENCES
    Tucker, Thomas J.
    BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES, 2014, 9 (04): : 633 - 639
  • [8] MICROPROCESSOR APPLICATIONS OF INTEGER ARITHMETIC
    RAAMOT, J
    PROCEEDINGS OF THE IEEE, 1978, 66 (02) : 238 - 244
  • [9] Linear Integer Arithmetic Revisited
    Bromberger, Martin
    Sturm, Thomas
    Weidenbach, Christoph
    AUTOMATED DEDUCTION - CADE-25, 2015, 9195 : 623 - 637
  • [10] An arithmetic topos for integer matrices
    Hemelaer, Jens
    JOURNAL OF NUMBER THEORY, 2019, 204 : 155 - 184