Widening integer arithmetic

被引:0
|
作者
Redwine, K [1 ]
Ramsey, N [1 ]
机构
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA 02138 USA
来源
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Some codes require computations to use fewer bits of precision than are normal for the target machine. For example, Java requires 32-bit arithmetic even on a 64-bit target. To run narrow codes on a wide target machine, we present a widening transformation. Almost every narrow operation can be widened by sign- or zero-extending the operands and using a target-machine instruction at its natural width. But extensions can sometimes be avoided, and our transformation avoids as many as possible. The key idea is knowing what each operation can accept in the high bits of its arguments and what it can guarantee about the high bits of its result. This knowledge is formalized using fill types, which drive the widening transformation.
引用
收藏
页码:232 / 249
页数:18
相关论文
共 50 条
  • [31] Is integer arithmetic fundamental to mental processing?: the mind's secret arithmetic
    Snyder, AW
    Mitchell, DJ
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1999, 266 (1419) : 587 - 592
  • [32] The number of divisors of an integer in arithmetic progressions.
    Derbal, A
    Smati, A
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (02) : 87 - 90
  • [33] Local Search for SMT on Linear Integer Arithmetic
    Cai, Shaowei
    Li, Bohan
    Zhang, Xindi
    COMPUTER AIDED VERIFICATION (CAV 2022), PT II, 2022, 13372 : 227 - 248
  • [34] COUNTING INTEGER POINTS ON QUADRICS WITH ARITHMETIC WEIGHTS
    Kumaraswamy, V. Vinay
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (10) : 6929 - 6959
  • [35] A comparative study of arithmetic constraints on integer intervals
    Apt, KR
    Zoeteweij, P
    RECENT ADVANCES IN CONSTRAINTS, 2004, 3010 : 1 - 24
  • [36] Fast Integer Multiplication Using Modular Arithmetic
    De, Anindya
    Kurur, Piyush
    Saha, Chandan
    Saptharishi, Ramprasad
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 499 - 505
  • [37] SERIAL INTEGER ARITHMETIC WITH MAGNETIC-BUBBLES
    WILLIAMS, RP
    IEEE TRANSACTIONS ON COMPUTERS, 1977, 26 (03) : 260 - 264
  • [38] FAST INTEGER MULTIPLICATION USING MODULAR ARITHMETIC
    De, Anindya
    Kurur, Piyush P.
    Saha, Chandan
    Saptharishi, Ramprasad
    SIAM JOURNAL ON COMPUTING, 2013, 42 (02) : 685 - 699
  • [39] On the distribution of (k, r)-integer in an arithmetic progression
    Srichan, Teerapat
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (01):
  • [40] Distributed high performance large integer arithmetic
    Lundberg, L
    2002 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, PROCEEDINGS OF THE WORKSHOPS, 2002, : 262 - 269