On 3D and 1D mathematical modeling of physically nonlinear beams

被引:8
|
作者
Krysko, A., V [1 ]
Awrejcewicz, J. [2 ]
Zhigalov, M., V [3 ]
Bodyagina, K. S. [3 ]
Krysko, V. A. [3 ]
机构
[1] Saratov State Tech Univ, Sci & Educ Ctr, Dept Math & Modelling, Politehn Skaya 77, Saratov 410054, Russia
[2] Lodz Univ Technol, Dept Automat Biomech & Mechatron, 1-15 Stefanowskiego Str, PL-90924 Lodz, Poland
[3] Saratov State Tech Univ, Dept Math & Modelling, Politehn Skaya 77, Saratov 410054, Russia
基金
俄罗斯基础研究基金会;
关键词
Physical nonlinearity; 3D (1D) theory; Nonhomogeneous plates; Euler-Bernoulli model; Timoshenko model; Finite element method; Method of variable elasticity parameters; ELASTOPLASTIC TORSION; SHELLS; BEHAVIOR; BARS;
D O I
10.1016/j.ijnonlinmec.2021.103734
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this work, mathematical models of physically nonlinear beams (and plates) are constructed in a three-dimensional and one-dimensional formulation based on the kinematic models of Euler-Bernoulli and Timoshenko. The modeling includes achievements of the deformation theory of plasticity, the von Mises plasticity criterion and the method of variable parameters of the Birger theory of elasticity. The theory is built for arbitrary boundary conditions, transverse loads, and stress-strain diagrams. The issue of solving perforated structures is also addressed. The numerical investigations are based on the finite element method and the method of variable elasticity parameters. Convergence of the method is also investigated.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Consistent coupling of positions and rotations for embedding 1D Cosserat beams into 3D solid volumes
    Steinbrecher, Ivo
    Popp, Alexander
    Meier, Christoph
    COMPUTATIONAL MECHANICS, 2022, 69 (03) : 701 - 732
  • [22] ON THE 3D(1D) AND 3D(1S) LEVELS OF SINGLY IONIZED ARGON
    MINNHAGEN, L
    ARKIV FOR FYSIK, 1958, 14 (02): : 123 - 125
  • [23] Laser Solitons in 1D, 2D and 3D
    Rosanov, Nikolay N.
    Fedorov, Sergey, V
    Veretenov, Nikolay A.
    EUROPEAN PHYSICAL JOURNAL D, 2019, 73 (07):
  • [24] The Hanle effect in 1D, 2D and 3D
    Sainz, RM
    Trujillo Bueno, J
    SOLAR POLARIZATION, 1999, 243 : 143 - +
  • [25] Laser Solitons in 1D, 2D and 3D
    Nikolay N. Rosanov
    Sergey V. Fedorov
    Nikolay A. Veretenov
    The European Physical Journal D, 2019, 73
  • [26] 3D, 2D, 1D - ADLER,DA
    BERNSTEIN, JE
    YOUNG CHILDREN, 1976, 31 (04): : 316 - 316
  • [27] Going from 3D to 1D: A 1D approach to common-envelope evolution
    Bronner, V. A.
    Schneider, F. R. N.
    Podsiadlowski, Ph.
    Roepke, F. K.
    ASTRONOMY & ASTROPHYSICS, 2024, 683
  • [28] An Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling
    McMahon, W. E.
    Olson, J. M.
    Geisz, J. F.
    Friedman, D. J.
    2012 38TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2012, : 2088 - 2091
  • [29] Love Wave Magnetic Field Sensor Modeling - from 1D to 3D Model
    Schmalz, Julius
    Spetzler, Benjamin
    Faupel, Franz
    Gerken, Martina
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2019, : 765 - 769
  • [30] 1D, 2D, and 3D Modeling of a PAC-UPC Laboratory Canal Bend
    Gomez, Manuel
    Martinez-Gomariz, Eduardo
    ADVANCES IN HYDROINFORMATICS, 2016, : 423 - 438