Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1HN/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics

被引:104
作者
Clore, GM
Schwieters, CD
机构
[1] NIDDKD, Chem Phys Lab, NIH, Bethesda, MD 20892 USA
[2] NIH, Div Computat Biosci, Ctr Informat Technol, Bethesda, MD 20892 USA
关键词
D O I
10.1021/ja028893d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A simple and reliable method for docking protein-protein complexes using H-1(N)/N-15 chemical shift mapping and backbone N-15-H-1 residual dipolar couplings is presented and illustrated with three complexes (EIN-HPr, IIA(Glc)-HPr, and IIA(Mtl)-HPr) of known structure. The H-1(N)/N-15 chemical shift mapping data are transformed into a set of highly ambiguous, intermolecular distance restraints (comprising between 400 and 3000 individual distances) with translational and some degree of orientational information content, while the dipolar couplings provide information on relative protein-protein orientation. The optimization protocol employs conjoined rigid body/torsion angle dynamics in simulated annealing calculations. The target function also comprises three nonbonded interactions terms: a van der Waals repulsion term to prevent atomic overlap, a radius of gyration term (Ergyr) to avoid expansion at the protein-protein interface, and a torsion angle database potential of mean force to bias interfacial side chain conformations toward physically allowed rotamers. For the EIN-HPr and IIA(Glc)-HPr complexes, all structures satisfying the experimental restraints (i.e., both the ambiguous intermolecular distance restraints and the dipolar couplings) converge to a single cluster with mean backbone coordinate accuracies of 0.7-1.5 Angstrom. For the IIA(Mtl)-HPr complex, twofold degeneracy remains, and the structures cluster into two distinct solutions differing by a 180 rotation about the z axis of the alignment tensor. The correct and incorrect solutions which have mean backbone coordinate accuracies of similar to0.5 and similar to10.5 Angstrom, respectively, can readily be distinguished using a variety of criteria: (a) examination of the overall H-1(N)/N-15 chemical shift perturbation map (because the incorrect cluster predicts the presence of residues at the interface that experience only minimal chemical shift perturbations; this information is readily incorporated into the calculations in the form of ambiguous intermolecular repulsion restraints); (b) back-calculation of dipolar couplings on the basis of molecular shape; or (c) the Ergyr distribution which, because of its global nature, directly reflects the interfacial packing quality. This methodology should be particularly useful for high throughput, NMR-based, structural proteomics.
引用
收藏
页码:2902 / 2912
页数:11
相关论文
共 55 条
[1]  
ANDERSON JW, 1993, J BIOL CHEM, V268, P12325
[2]   Dipolar couplings in macromolecular structure determination [J].
Bax, A ;
Kontaxis, G ;
Tjandra, N .
NUCLEAR MAGNETIC RESONANCE OF BIOLOGICAL MACROMOLECULES, PT B, 2001, 339 :127-174
[3]   Determination of the relative orientation of the two halves of the domain-swapped dimer of cyanovirin-N in solution using dipolar couplings and rigid body minimization [J].
Bewley, CA ;
Clore, GM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (25) :6009-6016
[4]   Docking unbound proteins using shape complementarity, desolvation, and electrostatics [J].
Chen, R ;
Weng, ZP .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2002, 47 (03) :281-294
[5]   Accurate and rapid docking of protein-protein complexes on the basis of intermolecular nuclear Overhauser enhancement data and dipolar couplings by rigid body minimization [J].
Clore, GM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (16) :9021-9025
[6]   Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude [J].
Clore, GM ;
Gronenborn, AM ;
Tjandra, N .
JOURNAL OF MAGNETIC RESONANCE, 1998, 131 (01) :159-162
[7]   R-factor, free R, and complete cross-validation for dipolar coupling refinement of NMR structures [J].
Clore, GM ;
Garrett, DS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (39) :9008-9012
[8]   Using conjoined rigid body/torsion angle simulated annealing to determine the relative orientation of covalently linked protein domains from dipolar couplings [J].
Clore, GM ;
Bewley, CA .
JOURNAL OF MAGNETIC RESONANCE, 2002, 154 (02) :329-335
[9]   χ1 Rotamer populations and angles of mobile surface side chains are accurately predicted by a torsion angle database potential of mean force [J].
Clore, GM ;
Kuszewski, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (12) :2866-2867
[10]   Determining the structures of large proteins and protein complexes by NMR [J].
Clore, GM ;
Gronenborn, AM .
TRENDS IN BIOTECHNOLOGY, 1998, 16 (01) :22-34