Sub-10-nm ordered structure and mechanochromism property of polyhedral oligosilsesquioxane tethered tetraphenylethylene

被引:3
|
作者
Gao, Si-Yu [1 ]
Lv, Xu-Chen [1 ]
Zheng, Jun-Feng [2 ]
Wen, Tao [3 ]
Bermeshev, Maxim, V [4 ]
Ren, Xiang-Kui [1 ,3 ,5 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, State Key Lab Chem Engn, Tianjin 300350, Peoples R China
[2] Nanjing Forestry Univ, Coll Chem Engn, Nanjing 210037, Peoples R China
[3] South China Univ Technol, South China Adv Inst Soft Matter Sci & Technol, Guangdong Prov Key Lab Funct & Intelligent Hybrid, Guangzhou 510640, Peoples R China
[4] Russian Acad Sci, AV Topchiev Inst Petrochem Synth, Moscow 119991, Russia
[5] South China Univ Technol, Guangdong Prov Key Lab Luminescence Mol Aggregate, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Polyhedral oligosilsesquioxane; Nanostructure; Tetraphenylethylene; Mechanochromism; AGGREGATION-INDUCED EMISSION; CRYSTAL-STRUCTURE; DESIGN;
D O I
10.1016/j.giant.2022.100090
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The construction of highly ordered nanostructure plays an important role in realizing the specific functions of organic materials. However, it remains challenging to design photoelectric materials with sub-10-nm nanostructures. Herein, a novel tetraphenylethylene derivative tethered with polyhedral oligosilsesquioxane nanocages (TPE-BPOSS) was designed and synthesized. The experimental results reveal that the introduction of POSS nanocages endows TPE-BPOSS with a hierarchically sub-10-nm ordered structure composed of columnar phase of non-planar TPE cores and crystalline phase of POSS moieties. Moreover, due to the transition between the ordered and disordered structure, TPE-BPOSS can exhibit reversible mechanochromism property. It is speculated that incorporating POSS nanocages into different non-planar fluorophores may be a new strategy to prepare functional materials with sub-10-nm nanostructure and luminescent property.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Polyhedral oligosilsesquioxane tethered tetraphenylethylene as turn-on fluorescent sensor for fluoride ions detection
    Zeng, Yu-Ting
    Gao, Si-Yu
    Traskovskis, Kaspars
    Gao, Baoxiang
    Ren, Xiang-Kui
    DYES AND PIGMENTS, 2021, 193
  • [2] Sub-10-nm electron beam lithography with sub-10-nm overlay accuracy
    Yamazaki, K
    Saifullah, MSM
    Namatsu, H
    Kurihara, K
    EMERGING LITHOGRAPHIC TECHNOLOGIES IV, 2000, 3997 : 458 - 466
  • [3] Sub-10-nm success
    David Pile
    Nature Photonics, 2012, 6 (12) : 800 - 800
  • [4] Sub-10-nm electronics
    Likharev, KK
    2003 IEEE CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS, 2003, : 19 - 19
  • [5] Sub-10-nm Nanogap Fabrication by Silicidation
    Tang, Xiaohui
    Francis, Laurent A.
    Dutu, Constantin Augustin
    Reckinger, Nicolas
    Raskin, Jean-Pierre
    2013 13TH IEEE CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2013, : 570 - 573
  • [6] Linewidth metrology for sub-10-nm lithography
    Thoms, S.
    Macintyre, D. S.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (06): : C6H6 - C6H10
  • [7] Nanomechanical property and nanowear measurements for sub-10-nm thick films in magnetic storage
    Lee, K. M.
    Yeo, C. -D.
    Polycarpou, A. A.
    EXPERIMENTAL MECHANICS, 2007, 47 (01) : 107 - 121
  • [8] Nanomechanical Property and Nanowear Measurements for Sub-10-nm Thick Films in Magnetic Storage
    K. M. Lee
    C.-D. Yeo
    A. A. Polycarpou
    Experimental Mechanics, 2007, 47
  • [9] Nanosphere Lithography for Sub-10-nm Nanogap Electrodes
    Ji, Deyang
    Li, Tao
    Fuchs, Harald
    ADVANCED ELECTRONIC MATERIALS, 2017, 3 (01):
  • [10] Sub-10-nm nanolithography with a scanning helium beam
    Sidorkin, Vadim
    van Veldhoven, Emile
    van der Drift, Emile
    Alkemade, Paul
    Salemink, Huub
    Maas, Diederik
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (04): : L18 - L20