SUPER-RESOLUTION OF LARGE VOLUMES OF SENTINEL-2 IMAGES WITH HIGH PERFORMANCE DISTRIBUTED DEEP LEARNING

被引:11
|
作者
Zhang, Run [1 ,2 ]
Cavallaro, Gabriele [2 ]
Jitsev, Jenia [2 ]
机构
[1] Rhein Westfal TH Aachen, Aachen, Germany
[2] Forschungszentrum Julich, Julich Supercomp Ctr, Julich, Germany
关键词
Sentinel-2; super-resolution; distributed deep learning; high performance computing;
D O I
10.1109/IGARSS39084.2020.9323734
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work proposes a novel distributed deep learning model for Remote Sensing (RS) images super-resolution. High Performance Computing (HPC) systems with GPUs are used to accelerate the learning of the unknown low to high resolution mapping from large volumes of Sentinel-2 data. The proposed deep learning model is based on self-attention mechanism and residual learning. The results demonstrate that state-of-the-art performance can be achieved by keeping the size of the model relatively small. Synchronous data parallelism is applied to scale up the training process without severe performance loss. Distributed training is thus shown to speed up learning substantially while keeping performance intact.
引用
收藏
页码:617 / 620
页数:4
相关论文
共 50 条
  • [41] Achieving Information Super-resolution for Sentinel-2 NDVI Through Gaussian Process Regression
    Karmakar, Chandrabali
    Antunes, Ana
    Datcu, Mihai
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 338 - 341
  • [42] A Real-World Benchmark for Sentinel-2 Multi-Image Super-Resolution
    Pawel Kowaleczko
    Tomasz Tarasiewicz
    Maciej Ziaja
    Daniel Kostrzewa
    Jakub Nalepa
    Przemyslaw Rokita
    Michal Kawulok
    Scientific Data, 10
  • [43] A Real-World Benchmark for Sentinel-2 Multi-Image Super-Resolution
    Kowaleczko, Pawel
    Tarasiewicz, Tomasz
    Ziaja, Maciej
    Kostrzewa, Daniel
    Nalepa, Jakub
    Rokita, Przemyslaw
    Kawulok, Michal
    SCIENTIFIC DATA, 2023, 10 (01)
  • [44] PROBA-V MULTI-TEMPORAL SUPER-RESOLUTION GUIDED BY SENTINEL-2
    Inzerillo, Gabriele
    Valsesia, Diego
    Magli, Enrico
    Niro, Fabrizio
    De Grandis, Erminia
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5139 - 5142
  • [45] Deep learning for image super-resolution
    Yang, Wenming
    Zhou, Fei
    Zhu, Rui
    Fukui, Kazuhiro
    Wang, Guijin
    Xue, Jing-Hao
    NEUROCOMPUTING, 2020, 398 (398) : 291 - 292
  • [46] SEN2VENμS, a Dataset for the Training of Sentinel-2 Super-Resolution Algorithms
    Michel, Julien
    Vinasco-Salinas, Juan
    Inglada, Jordi
    Hagolle, Olivier
    DATA, 2022, 7 (07)
  • [47] Deep blind super-resolution for hyperspectral images
    Yang, Pei
    Ma, Yong
    Mei, Xiaoguang
    Chen, Qihai
    Wu, Minghui
    Ma, Jiayi
    PATTERN RECOGNITION, 2025, 157
  • [48] DIFFUSION MODELS WITH CROSS-MODAL DATA FOR SUPER-RESOLUTION OF SENTINEL-2 TO 2.5 METER RESOLUTION
    Sarmad, Muhammad
    Kampffmeyer, Michael C.
    Salberg, Arnt-Borre
    IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024, 2024, : 1103 - 1107
  • [49] Unsupervised deep learning based change detection in Sentinel-2 images
    Saha, Sudipan
    Solano-Correa, Yady Tatiana
    Bovolo, Francesca
    Bruzzone, Lorenzo
    2019 10TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2019,
  • [50] LEARNING BASED SUPER-RESOLUTION OF HISTOLOGICAL IMAGES
    Vahadane, Abhishek
    Kumar, Neeraj
    Sethi, Amit
    2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 816 - 819