Diagnostic Classification of Cases of Canine Leishmaniasis Using Machine Learning

被引:4
|
作者
Ferreira, Tiago S. [1 ]
Santana, Ewaldo E. C. [1 ]
Jacob Junior, Antonio F. L. [1 ]
Silva Junior, Paulo F. [1 ]
Bastos, Luciana S. [2 ]
Silva, Ana L. A. [2 ]
Melo, Solange A. [3 ]
Cruz, Carlos A. M. [4 ]
Aquino, Vivianne S. [4 ]
Castro, Luis S. O. [4 ]
Lima, Guilherme O. [5 ]
Freire, Raimundo C. S. [6 ]
机构
[1] Univ Estadual Maranhao, Grad Program Computat Engn & Syst, BR-65690000 Sao Luis, Maranhao, Brazil
[2] Univ Estadual Maranhao, Grad Program Anim Sci, BR-65690000 Sao Luis, Maranhao, Brazil
[3] Univ Estadual Maranhao, Grad Program Anim Hlth Def, BR-65690000 Sao Luis, Maranhao, Brazil
[4] Univ Fed Amazonas, Grad Program Elect Engn, BR-69067005 Manaus, Amazonas, Brazil
[5] Univ Fed Maranhao, Grad Program Elect Engn, BR-65690000 Sao Luis, Maranhao, Brazil
[6] Univ Fed Campina Grande, Grad Program Elect Engn, BR-58428830 Campina Grande, Paraiba, Brazil
关键词
machine learning; classification; logistic regression; canine visceral leishmaniasis; PREDICTION; DOGS;
D O I
10.3390/s22093128
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Proposal techniques that reduce financial costs in the diagnosis and treatment of animal diseases are welcome. This work uses some machine learning techniques to classify whether or not cases of canine visceral leishmaniasis are present by physical examinations. For validation of the method, four machine learning models were chosen: K-nearest neighbor, Naive Bayes, support vector machine and logistic regression models. The tests were performed on three hundred and forty dogs, using eighteen characteristics of the animal and the ELISA (enzyme-linked immunosorbent assay) serological test as validation. Logistic regression achieved the best metrics: Accuracy of 75%, sensitivity of 84%, specificity of 67%, a positive likelihood ratio of 2.53 and a negative likelihood ratio of 0.23, showing a positive relationship in the evaluation between the true positives and rejecting the cases of false negatives.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Classification of Heart Sounds Using Machine Learning
    Mastracci, Nathaniel
    Derakhshan, Farnaz
    Sykes, Edward R.
    Khan, Dodo
    2023 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH, ICDH, 2023, : 205 - 207
  • [42] Ballistic Target Classification Using Machine Learning
    Sukut, Mertcan
    2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2023,
  • [43] Seismic Data Classification using Machine Learning
    Li, Wenrui
    Nakshatra
    Narvekar, Nishita
    Raut, Nitisha
    Sirkeci, Birsen
    Gao, Jerry
    2018 IEEE FOURTH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (IEEE BIGDATASERVICE 2018), 2018, : 56 - 63
  • [44] Grapevine Varieties Classification Using Machine Learning
    Marques, Pedro
    Padua, Luis
    Adao, Telmo
    Hruska, Jonas
    Sousa, Jose
    Peres, Emanuel
    Sousa, Joaquim J.
    Morais, Raul
    Sousa, Antonio
    PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I, 2019, 11804 : 186 - 199
  • [45] Modelling and Classification of Sepsis using Machine Learning
    Amrita, I
    Martis, Roshan Joy
    Ashwini, K.
    2021 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER TECHNOLOGIES AND OPTIMIZATION TECHNIQUES (ICEECCOT), 2021, : 262 - 266
  • [46] Skin cancer classification using machine learning
    Rodrigue Bogne Tchema
    Anastasis C. Polycarpou
    Marios Nestoros
    Multimedia Tools and Applications, 2025, 84 (6) : 3239 - 3256
  • [47] Classification of Pilates Using MediaPipe and Machine Learning
    Zhao, Mengjiao
    Lu, Nike
    Guan, Yifeng
    IEEE ACCESS, 2024, 12 : 77133 - 77140
  • [48] Classification of Sentiment Analysis Using Machine Learning
    Parikh, Satyen M.
    Shah, Mitali K.
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 76 - 86
  • [49] Microservice Fingerprinting and Classification using Machine Learning
    Chang, Hyunseok
    Kodialam, Murali
    Lakshman, T. V.
    Mukherjee, Sarit
    2019 IEEE 27TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (IEEE ICNP), 2019,
  • [50] DAMAGE CLASSIFICATION OF COMPOSITES USING MACHINE LEARNING
    Dabetwar, Shweta
    Ekwaro-Osire, Stephen
    Dias, Joao Paulo
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 13, 2020,