Diagnostic Classification of Cases of Canine Leishmaniasis Using Machine Learning

被引:4
|
作者
Ferreira, Tiago S. [1 ]
Santana, Ewaldo E. C. [1 ]
Jacob Junior, Antonio F. L. [1 ]
Silva Junior, Paulo F. [1 ]
Bastos, Luciana S. [2 ]
Silva, Ana L. A. [2 ]
Melo, Solange A. [3 ]
Cruz, Carlos A. M. [4 ]
Aquino, Vivianne S. [4 ]
Castro, Luis S. O. [4 ]
Lima, Guilherme O. [5 ]
Freire, Raimundo C. S. [6 ]
机构
[1] Univ Estadual Maranhao, Grad Program Computat Engn & Syst, BR-65690000 Sao Luis, Maranhao, Brazil
[2] Univ Estadual Maranhao, Grad Program Anim Sci, BR-65690000 Sao Luis, Maranhao, Brazil
[3] Univ Estadual Maranhao, Grad Program Anim Hlth Def, BR-65690000 Sao Luis, Maranhao, Brazil
[4] Univ Fed Amazonas, Grad Program Elect Engn, BR-69067005 Manaus, Amazonas, Brazil
[5] Univ Fed Maranhao, Grad Program Elect Engn, BR-65690000 Sao Luis, Maranhao, Brazil
[6] Univ Fed Campina Grande, Grad Program Elect Engn, BR-58428830 Campina Grande, Paraiba, Brazil
关键词
machine learning; classification; logistic regression; canine visceral leishmaniasis; PREDICTION; DOGS;
D O I
10.3390/s22093128
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Proposal techniques that reduce financial costs in the diagnosis and treatment of animal diseases are welcome. This work uses some machine learning techniques to classify whether or not cases of canine visceral leishmaniasis are present by physical examinations. For validation of the method, four machine learning models were chosen: K-nearest neighbor, Naive Bayes, support vector machine and logistic regression models. The tests were performed on three hundred and forty dogs, using eighteen characteristics of the animal and the ELISA (enzyme-linked immunosorbent assay) serological test as validation. Logistic regression achieved the best metrics: Accuracy of 75%, sensitivity of 84%, specificity of 67%, a positive likelihood ratio of 2.53 and a negative likelihood ratio of 0.23, showing a positive relationship in the evaluation between the true positives and rejecting the cases of false negatives.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Canine leishmaniasis: A diagnostic and clinical challenge
    Baneth, Gad
    Aroch, Itamar
    VETERINARY JOURNAL, 2008, 175 (01): : 14 - 15
  • [2] Canine leishmaniasis: Clinical and diagnostic aspects
    Ciaramella, P
    Corona, M
    COMPENDIUM ON CONTINUING EDUCATION FOR THE PRACTICING VETERINARIAN, 2003, 25 (05): : 358 - +
  • [3] Classification of Potential Breast/Colorectal Cancer Cases Using Machine Learning Methods
    Jafarpour, Maryam
    Moeini, Ali
    Maryami, Niloofar
    Nahvijou, Azin
    Mohammadian, Ayoub
    INTERNATIONAL JOURNAL OF CANCER MANAGEMENT, 2023, 16 (01)
  • [4] Machine Learning Classification of Diagnostic Proteomics for Alzheimer Disease
    Tandon, Raghav
    Seyfried, Nicholas
    Mitchell, Cassie S.
    ANNALS OF NEUROLOGY, 2021, 90 : S91 - S91
  • [5] A new strategy for canine visceral leishmaniasis diagnosis based on FTIR spectroscopy and machine learning
    Larios, Gustavo
    Ribeiro, Matheus
    Arruda, Carla
    Oliveira, Samuel L.
    Canassa, Thalita
    Baker, Matthew J.
    Marangoni, Bruno
    Ramos, Carlos
    Cena, Cicero
    JOURNAL OF BIOPHOTONICS, 2021, 14 (11)
  • [6] Canine visceral leishmaniasis diagnosis by UV spectroscopy of blood serum and machine learning algorithms
    Coelho, Mateus Loterio
    Franca, Thiago
    Mateus, Nathalia Lopes Fontoura
    Lima Junior, Manoel Sebastiao da Costa
    Cena, Cicero
    Ramos, Carlos Alberto do Nascimento
    PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2023, 42
  • [7] Diagnostic classification based on DNA methylation profiles using sequential machine learning approaches
    Wojewodzic, Marcin W.
    Lavender, Jan P.
    PLOS ONE, 2024, 19 (09):
  • [8] Using machine learning for communication classification
    Stefan P. Penczynski
    Experimental Economics, 2019, 22 : 1002 - 1029
  • [9] Classification of Dreams Using Machine Learning
    Matwin, Stan
    De Koninck, Joseph
    Razavi, Amir H.
    Amini, Ray Reza
    ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 169 - 174
  • [10] Malware Classification Using Machine Learning
    Savard, Nolan
    Feinauer, David M.
    Alghazo, Jaafar M.
    Abdelhamid, Sherif E.
    SOUTHEASTCON 2024, 2024, : 843 - 847