Probabilistic interpretation for system of conservation law arising in adhesion particle dynamics

被引:5
|
作者
Dermoune, A [1 ]
机构
[1] Univ Maine, Equipe Stat & Proc, F-72085 Le Mans 9, France
关键词
D O I
10.1016/S0764-4442(98)85013-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This Note presents a construction of a solution for the nonlinear stochastic differential equation X-t = X-0 + integral(0)(t) E[mu(0)(X-0)\X-s]ds, t greater than or equal to 0. The random X-0 with values in R and the function mu(0) are given. We denote by P-t the probability distribution of X-t and mu(x,t) = E[mu(0)(X-0)\X-t = x]. We prove that (P-t, mu(.,t), t greater than or equal to 0) is a weak solution for system of conservation law arising in adhesion particle dynamics. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:595 / 599
页数:5
相关论文
共 50 条
  • [41] Stochastic Models of Cell Protrusion Arising From Spatiotemporal Signaling and Adhesion Dynamics
    Welf, Erik S.
    Haugh, Jason M.
    COMPUTATIONAL METHODS IN CELL BIOLOGY, 2012, 110 : 223 - +
  • [42] Adhesion dynamics of functionalized nanocarriers to endothelial cells: a dissipative particle dynamics study
    Akbarishandiz, Saeed
    Khani, Shaghayegh
    Maia, Joao
    SOFT MATTER, 2023, 19 (47) : 9254 - 9268
  • [43] Adhesion dynamics of Janus nanocarriers to endothelial cells: A dissipative particle dynamics study
    Akbarishandiz, Saeed
    Khani, Shaghayegh
    Maia, Joao
    PHYSICAL REVIEW E, 2024, 109 (06)
  • [44] Lie symmetry and conservation law of Birkhoffian system
    Mei, FX
    CHINESE SCIENCE BULLETIN, 1999, 44 (04): : 318 - 320
  • [45] Lie symmetry and conservation law of Birkhoffian system
    MEI FengxiangDepartment of Applied Mechanics
    ChineseScienceBulletin, 1999, (04) : 318 - 320
  • [46] Conservation Laws and Lumped System Dynamics
    van der Schaft, Arjan
    Maschke, Bernhard
    MODEL-BASED CONTROL: BRIDGING RIGOROUS THEORY AND ADVANCED TECHNOLOGY, 2009, : 31 - +
  • [47] Probabilistic signal interpretation methods for a thermopile pedestrian detection system
    Linzmeier, DT
    Vogt, D
    Prasanna, R
    Mekhaiel, M
    Dietmayer, KCJ
    2005 IEEE Intelligent Vehicles Symposium Proceedings, 2005, : 12 - 17
  • [48] Probabilistic interpretation of a coupled system of Hamilton–Jacobi–Bellman equations
    Rainer Buckdahn
    Ying Hu
    Journal of Evolution Equations, 2010, 10 : 529 - 549
  • [49] A probabilistic interpretation of the medical expert system CADIAG-2
    Muino, David Picado
    SOFT COMPUTING, 2011, 15 (10) : 2013 - 2020
  • [50] Non-local Conservation Law from Stochastic Particle Systems
    Marielle Simon
    Christian Olivera
    Journal of Dynamics and Differential Equations, 2018, 30 : 1661 - 1682