Research progress of zero-shot learning

被引:32
|
作者
Sun, Xiaohong [1 ,2 ]
Gu, Jinan [1 ]
Sun, Hongying [2 ]
机构
[1] Jiangsu Univ, Sch Mech Engn, Zhenjiang, Peoples R China
[2] Anyang Inst Technol, Sch Mech Engn, Anyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Zero-shot learning; Feature extraction; Semantic representation; Visual-semantic mapping; ACTION RECOGNITION; MODEL; EFFICIENT; SCALE;
D O I
10.1007/s10489-020-02075-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Although there have been encouraging breakthroughs in supervised learning since the renaissance of deep learning, the recognition of large-scale object classes remains a challenge, especially when some classes have no or few training samples. In this paper, the development of ZSL is reviewed comprehensively, including the evolution, key technologies, mainstream models, current research hotspots and future research directions. First, the evolution process is introduced from the perspectives of multi-shot, few-shot to zero-shot learning. Second, the key techniques of ZSL are analyzed in detail in terms of three aspects: visual feature extraction, semantic representation and visual-semantic mapping. Third, some typical models are interpreted in chronological order. Finally, closely related articles from the last three years are collected to analyze the current research hotspots and list future research directions.
引用
收藏
页码:3600 / 3614
页数:15
相关论文
共 50 条
  • [41] Zero-shot Learning via Simultaneous Generating and Learning
    Yu, Hyeonwoo
    Lee, Beomhee
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [42] Learning Attention as Disentangler for Compositional Zero-shot Learning
    Hao, Shaozhe
    Han, Kai
    Wong, Kwan-Yee K.
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15315 - 15324
  • [43] Attributes learning network for generalized zero-shot learning
    Yun, Yu
    Wang, Sen
    Hou, Mingzhen
    Gao, Quanxue
    NEURAL NETWORKS, 2022, 150 : 112 - 118
  • [44] Learning Graph Embeddings for Compositional Zero-shot Learning
    Naeem, Muhammad Ferjad
    Xian, Yongqin
    Tombari, Federico
    Akata, Zeynep
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 953 - 962
  • [45] Learning Conditional Attributes for Compositional Zero-Shot Learning
    Wang, Qingsheng
    Liu, Lingqiao
    Jing, Chenchen
    Chen, Hao
    Liang, Guoqiang
    Wang, Peng
    Shen, Chunhua
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 11197 - 11206
  • [46] Learning a Deep Embedding Model for Zero-Shot Learning
    Zhang, Li
    Xiang, Tao
    Gong, Shaogang
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3010 - 3019
  • [47] Integrative zero-shot learning for fruit recognition
    Tran-Anh, Dat
    Huu, Quynh Nguyen
    Bui-Quoc, Bao
    Hoang, Ngan Dao
    Quoc, Tao Ngo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (29) : 73191 - 73213
  • [48] Structure Fusion and Propagation for Zero-Shot Learning
    Lin, Guangfeng
    Chen, Yajun
    Zhao, Fan
    PATTERN RECOGNITION AND COMPUTER VISION, PT III, 2018, 11258 : 465 - 477
  • [49] Kernelized distance learning for zero-shot recognition
    Zarei, Mohammad Reza
    Taheri, Mohammad
    Long, Yang
    INFORMATION SCIENCES, 2021, 580 : 801 - 818
  • [50] Rethinking attribute localization for zero-shot learning
    Shuhuang CHEN
    Shiming CHEN
    GuoSen XIE
    Xiangbo SHU
    Xinge YOU
    Xuelong LI
    Science China(Information Sciences), 2024, (07) : 184 - 196