Video Neuro-advertising Recommender Model for Affective BIM

被引:0
|
作者
Kaklauskas, Arturas [1 ]
Tupenaite, Laura [1 ]
Ubarte, Ieva [1 ]
Raupys, Dainius [1 ]
机构
[1] Vilnius Gediminas Tech Univ, Dept Construct Management & Real Estate, Vilnius, Lithuania
来源
2018 7TH INTERNATIONAL CONFERENCE ON COMPUTERS COMMUNICATIONS AND CONTROL (ICCCC 2018) | 2018年
关键词
Video Neuro-advertising; Recommender Model; Affective BIM; Affective Computing;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The idea of the VINERS project is to perform research on neuro-advertising by applying biometric, physiological, intelligent and affective computer technologies as well as statistical analysis, text and data analytics, recommender and multicriteria analysis methods in order to develop the Video Neuro-advertising (VINERS) Model and System. The VINERS Model is innovative on a global level by the following aspects: 1) compilation and analysis of physiological and emotional maps of advertising contents along with neuro-matrices, 2) completion of a neuro-questionnaire and 3) development of the VINERS1 Sub model for analyzing and assessing the impact of electronic advertising (advertising of contents under development) and the VINERS2 Sub-model for intuitively broadcasting an electronic advertisement (already developed contents of an advertisement). This study demonstrates the Video Neuro-advertising Recommender Model by its affective BIM basis.
引用
收藏
页码:246 / 251
页数:6
相关论文
共 28 条
  • [1] Video Neuro-Advertising Method for Housing
    Kaklauskas, Arturas
    Herrera-Viedma, Enrique
    Ubarte, Ieva
    Tupenaite, Laura
    Raupys, Dainius
    Strikaite, Agne
    Seniut, Mark
    NEW TRENDS IN INTELLIGENT SOFTWARE METHODOLOGIES, TOOLS AND TECHNIQUES (SOMET_18), 2018, 303 : 839 - 857
  • [2] A neuro-advertising property video recommendation system
    Kaklauskas, A.
    Zavadskas, E. K.
    Banaitis, A.
    Meidute-Kavaliauskiene, I.
    Liberman, A.
    Dzitac, S.
    Ubarte, I.
    Binkyte, A.
    Cerkauskas, J.
    Kuzminske, A.
    Naumcik, A.
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2018, 131 : 78 - 93
  • [3] Customized ViNeRS Method for Video Neuro-Advertising of Green Housing
    Kaklauskas, Arturas
    Zavadskas, Edmundas Kazimieras
    Schuller, Bjoern
    Lepkova, Natalija
    Dzemyda, Gintautas
    Sliogeriene, Jurate
    Kurasova, Olga
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2020, 17 (07)
  • [4] AFFECTIVE VIDEO RECOMMENDER SYSTEM
    Soni, Yashowardhan
    Alm, Cecilia Ovesdotter
    Bailey, Reynold
    2019 IEEE WESTERN NEW YORK IMAGE AND SIGNAL PROCESSING WORKSHOP (WNYISPW), 2019,
  • [5] Affective video recommender systems: A survey
    Wang, Dandan
    Zhao, Xiaoming
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [6] CAVVA: Computational Affective Video-in-Video Advertising
    Yadati, Karthik
    Katti, Harish
    Kankanhalli, Mohan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2014, 16 (01) : 15 - 23
  • [7] An improvement of video recommender similarity measurement model
    Deng Zhenrong
    Zhang Xi
    Deng Xing
    Xu Liang
    Huang Wenming
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL CONTROL AND COMPUTATIONAL ENGINEERING, 2015, 124 : 675 - 680
  • [8] Video saliency computational model and its application in video advertising
    Han, J.-W. (junweihan2010@gmail.com), 1600, Editorial Board of Jilin University (44):
  • [9] COGNITIVE-AFFECTIVE MODEL OF ACCEPTANCE OF MOBILE PHONE ADVERTISING
    Olarte-Pascual, Cristina
    Pelegrin-Borondo, Jorge
    Reinares-Lara, Eva
    E & M EKONOMIE A MANAGEMENT, 2016, 19 (04): : 134 - 148
  • [10] Tweet recommender model using adaptive neuro-fuzzy inference system
    Jain, Deepak Kumar
    Kumar, Akshi
    Sharma, Vibhuti
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 112 : 996 - 1009