CO2 capture from natural gas combined cycles by CO2 selective membranes

被引:41
|
作者
Turi, D. M. [1 ]
Ho, M. [2 ]
Ferrari, M. C. [3 ]
Chiesa, P. [1 ]
Wiley, D. E. [2 ]
Romano, M. C. [1 ]
机构
[1] Politecn Milan, Dept Energy, Via Lambruschini 4, I-20156 Milan, Italy
[2] Univ Sydney, Sch Chem & Biomol Engn, Sydney, NSW 2006, Australia
[3] Univ Edinburgh, Sch Engn, Robert Stevenson Rd, Edinburgh EH9 3FB, Midlothian, Scotland
关键词
CO2; membranes; Combined cycle; Carbon capture; CCS; Economic analysis; CARBON-DIOXIDE CAPTURE; POWER-PLANTS; POSTCOMBUSTION CAPTURE; THERMODYNAMIC ANALYSIS; SEPARATION; COST;
D O I
10.1016/j.ijggc.2017.03.022
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper performs a techno-economic analysis of natural gas-fired combined cycle (NGCC) power plants integrated with CO2 selective membranes for post-combustion CO2 capture. The configuration assessed is based on a two-membrane system: a CO2 capture membrane that separates the CO2 for final sequestration and a CO2 recycle membrane that selectively recycles CO2 to the gas turbine compressor inlet in order to increase the CO2 concentration in the gas turbine flue gas. Three different membrane technologies with different permeability and selectivity have been investigated. The mass and energy balances are calculated by integrating a power plant model, a membrane model and a CO2 purification unit model. An economic model is then used to estimate the cost of electricity and of CO2 avoided. A sensitivity analysis on the main process parameters and economic assumptions is also performed. It was found that a combination of a high permeability membrane with moderate selectivity as a recycle membrane and a very high selectivity membrane with high permeability used for the capture membrane resulted in the lowest CO2 avoided cost of 75 US$/tco(2). This plant features a feed pressure of 1.5 bar and a permeate pressure of 0.2 bar for the capture membrane. This result suggests that membrane systems can be competitive for CO2 capture from NGCC power plants when compared with MEA absorption. However, to achieve significant advantages with respect to benchmark MEA capture, better membrane permeability and lower costs are needed with respect to the state of the art technology. In addition, due to the selective recycle, the gas turbine operates with a working fluid highly enriched with CO2. This requires redesigning gas turbine components, which may represent a major challenge for commercial deployment. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:168 / 183
页数:16
相关论文
共 50 条
  • [21] COMBINED CYCLES WITH CO2 CAPTURE: TWO ALTERNATIVES FOR SYSTEM INTEGRATION
    Sipocz, Nikolett
    Assadi, Mohsen
    PROCEEDINGS OF ASME TURBO EXPO 2009, VOL 4, 2009, : 233 - 241
  • [22] Recent developments on polymeric membranes for CO2 capture from flue gas
    Han, Yang
    Ho, W. S. Winston
    JOURNAL OF POLYMER ENGINEERING, 2020, 40 (06) : 529 - 542
  • [23] Highly Selective Capture of the Greenhouse Gas CO2 in Polymers
    Sun, Lin-Bing
    Kang, Ying-Hu
    Shi, Yao-Qi
    Jiang, Yao
    Liu, Xiao-Qin
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2015, 3 (12): : 3077 - 3085
  • [24] CO2 Capture in Natural Gas Production by Adsorption Processes
    Grande, Carlos A.
    Roussanaly, Simon
    Anantharaman, Rahul
    Lindqvist, Karl
    Singh, Prachi
    Kemper, Jasmin
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 2259 - 2264
  • [25] Thermal integration of natural gas combined cycle power plants with CO2 capture systems and organic Rankine cycles
    Geovanni Esquivel-Patino, Gerardo
    Serna-Gonzalez, Medardo
    Napoles-Rivera, Fabricio
    ENERGY CONVERSION AND MANAGEMENT, 2017, 151 : 334 - 342
  • [26] HIGH EFFICIENCY SOFC POWER CYCLES WITH INDIRECT NATURAL GAS REFORMING AND CO2 CAPTURE
    Campanari, Stefano
    Gazzani, Matteo
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2014, VOL 3A, 2014,
  • [27] High Efficiency SOFC Power Cycles With Indirect Natural Gas Reforming and CO2 Capture
    Campanari, Stefano
    Gazzani, Matteo
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2015, 12 (02):
  • [28] Configuration analysis of oxy-fuel cycles with natural gas reforming and CO2 capture
    Zhang, Na
    Lior, Noam
    ECOS 2006: PROCEEDINGS OF THE 19TH INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS, VOLS 1-3, 2006, : 1619 - +
  • [29] CO2 capture from combined cycles integrated with Molten Carbonate Fuel Cells
    Campanari, Stefano
    Chiesa, Paolo
    Manzolini, Giampaolo
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2010, 4 (03) : 441 - 451
  • [30] Development of CO2 Molecular Gate Membranes for IGCC Process with CO2 Capture
    Kai, Teruhiko
    Duan, Shuhong
    Ito, Fuminori
    Mikami, Satoshi
    Sato, Yoshinobu
    Nakao, Shin-ichi
    13TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, GHGT-13, 2017, 114 : 613 - 620