Buckwheat Disease Recognition Based on Convolution Neural Network

被引:6
|
作者
Liu, Xiaojuan [1 ]
Zhou, Shangbo [1 ]
Chen, Shanxiong [2 ]
Yi, Zelin [3 ]
Pan, Hongyu [2 ]
Yao, Rui [2 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
[2] Southwest Univ, Coll Comp & Informat Sci, Chongqing 400715, Peoples R China
[3] Southwest Univ, Coll Agron & Biotechnol, Chongqing 400715, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 09期
关键词
buckwheat disease; convolutional neural network; image detection; deep learning; recognition; CROP; IDENTIFICATION; CLASSIFICATION; PESTS;
D O I
10.3390/app12094795
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Buckwheat is an important cereal crop with high nutritional and health value. Buckwheat disease greatly affects the quality and yield of buckwheat. The real-time monitoring of disease is an essential part of ensuring the development of the buckwheat industry. In this research work, we proposed an automated way to identify buckwheat diseases. It was achieved by integrating a convolutional neural network (CNN) with the image processing technology. Firstly, the proposed approach would detect the buckwheat disease area accurately. Then, to improve the accuracy of classification, a two-level inception structure was added to the traditional convolutional neural network for accurate feature extraction. It also helps to handle low-quality image problems, which includes complex imaging environment and leaf crossing in sampling buckwheat image, etc. At the same time, instead of the traditional convolution, the convolution based on cosine similarity was adopted to reduce the influence of uneven illumination during the imaging. The experiment proved that the revised convolution enabled better feature extraction within samples with uneven illumination. Finally, the experiment results showed that the accuracy, recall, and F1-measure of the disease detection reached 97.54, 96.38, and 97.82%, respectively. For identifying disease categories, the mean values of precision, recall, and F1-measure were 84.86, 85.78, and 85.4%. Our method has provided important technical support for realizing the automatic recognition of buckwheat diseases.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Seedlings Supplement Device and Seedling Recognition Based on Convolution Neural Network
    Zhang, Yong
    TRAITEMENT DU SIGNAL, 2022, 39 (05) : 1567 - 1575
  • [42] FPGA-based Convolution Neural Network for Traffic Sign Recognition
    Yao, Yuchen
    Zhang, Zhiqian
    Yang, Zhen
    Wang, Jian
    Lai, Jinmei
    2017 IEEE 12TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2017, : 891 - 894
  • [43] Research on face recognition algorithm based on improved convolution neural network
    Liu Hui
    Song Yu-Jie
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 2802 - 2805
  • [44] High Resolution Radar Target Recognition Based on Convolution Neural Network
    He S.
    Zhang R.
    Ou J.
    Zhang J.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2019, 46 (08): : 141 - 148
  • [45] The Facial Recognition Method of the Cow Based on the Improved Convolution Neural Network
    Weng, Zhi
    Meng, Fansheng
    Fan, Longzhen
    Zheng, Yan
    Zheng, Zhiqiang
    Gong, Caili
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 127 : 33 - 34
  • [46] A Convolution Neural Network Engine for Sclera Recognition
    Maheshan, M. S.
    Harish, B. S.
    Nagadarshan, N.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2020, 6 (01): : 78 - 83
  • [47] Design of Chinese Character Recognition Based on AlexNet Convolution Neural Network
    Xie, Songhua
    Yang, Hailiang
    Nie, Hui
    AIPR 2020: 2020 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND PATTERN RECOGNITION, 2020, : 68 - 73
  • [48] Banknote Image Defect Recognition Method Based on Convolution Neural Network
    Wang Ke
    Wang Huiqin
    Shu Yue
    Mao Li
    Qiu Fengyan
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2016, 10 (06): : 269 - 279
  • [49] Human Face Recognition Based on Adaptive Deep Convolution Neural Network
    Chen Liang
    Guo Xiaojie
    Geng Chenlu
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 6967 - 6970
  • [50] Multimodal emotion recognition based on manifold learning and convolution neural network
    Zhang, Yong
    Cheng, Cheng
    Zhang, YiDie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (23) : 33253 - 33268