Preview of machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery

被引:6
|
作者
Callaghan, Sarah [1 ]
机构
[1] Cell Press, 50 Hampshire St, Cambridge, MA USA
来源
PATTERNS | 2021年 / 2卷 / 04期
关键词
D O I
10.1016/j.patter.2021.100239
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Metal-organic frameworks (MOFs) are a class of chemical compounds used for the storage of gases such as hydrogen and carbon dioxide. They also have potential applications in gas purification, catalysis and as supercapacitors. A database of quantum-chemical properties for over 14,000 MOF structures (the ``QMOF database'') has been created and made available to the community along with code for machine learning and other related resources.
引用
收藏
页数:2
相关论文
共 50 条
  • [1] Machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery
    Rosen, Andrew S.
    Iyer, Shaelyn M.
    Ray, Debmalya
    Yao, Zhenpeng
    Aspuru-Guzik, Alan
    Gagliardi, Laura
    Notestein, Justin M.
    Snurr, Randall Q.
    MATTER, 2021, 4 (05) : 1578 - 1597
  • [2] Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks
    Odoh, Samuel O.
    Cramer, Christopher J.
    Truhlar, Donald G.
    Gagliardi, Laura
    CHEMICAL REVIEWS, 2015, 115 (12) : 6051 - 6111
  • [3] Machine learning improves metal-organic frameworks design and discovery
    Tamakloe, Senam
    MRS BULLETIN, 2022, 47 (09) : 886 - 886
  • [4] Interpretable machine learning for materials discovery: Predicting CO2 adsorption properties of metal-organic frameworks
    Teng, Yukun
    Shan, Guangcun
    APL MATERIALS, 2024, 12 (08):
  • [5] Accelerating Discovery of Water Stable Metal-Organic Frameworks by Machine Learning
    Zhang, Zhiming
    Pan, Fusheng
    Mohamed, Saad Aldin
    Ji, Chengxin
    Zhang, Kang
    Jiang, Jianwen
    Jiang, Zhongyi
    SMALL, 2024, 20 (42)
  • [6] Machine learning and descriptor selection for the computational discovery of metal-organic frameworks
    Mukherjee, Krishnendu
    Colon, Yamil J.
    MOLECULAR SIMULATION, 2021, 47 (10-11) : 857 - 877
  • [7] Combining machine learning and metal-organic frameworks research: Novel modeling, performance prediction, and materials discovery
    Li, Chunhua
    Bao, Luqian
    Ji, Yixin
    Tian, Zhehang
    Cui, Mengyao
    Shi, Yubo
    Zhao, Zhilei
    Wang, Xianyou
    COORDINATION CHEMISTRY REVIEWS, 2024, 514
  • [8] From Data to Discovery: Recent Trends of Machine Learning in Metal-Organic Frameworks
    Park, Junkil
    Kim, Honghui
    Kang, Yeonghun
    Lim, Yunsung
    Kim, Jihan
    JACS AU, 2024, 4 (10): : 3727 - 3743
  • [9] Applications of machine learning in metal-organic frameworks
    Chong, Sanggyu
    Lee, Sangwon
    Kim, Baekjun
    Kim, Jihan
    COORDINATION CHEMISTRY REVIEWS, 2020, 423
  • [10] Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks
    Li, Wei
    Liang, Tiangui
    Lin, Yuanchuang
    Wu, Weixiong
    Li, Song
    PROGRESS IN CHEMISTRY, 2022, 34 (12) : 2619 - 2637