Promising nature-based nitrogen-doped porous carbon nanomaterial derived from borassus flabellifer male inflorescence as superior metal-free electrocatalyst for oxygen reduction reaction

被引:19
|
作者
Kumaresan, Thileep Kumar [1 ]
Gunasekaran, Sivagaami Sundari [1 ]
Elumalai, Senthil Kumar [1 ]
Masilamani, Shanmugharaj Andikkadu [2 ]
Raman, Kalaivani [1 ]
Rengarajan, Balaji [3 ]
Subashchandrabose, Raghu [2 ]
机构
[1] VISTAS, Dept Chem, Chennai 600117, Tamil Nadu, India
[2] VISTAS, CARD, Chem, Chennai 600117, Tamil Nadu, India
[3] CFCT ARCI, IIT M Res Pk, Chennai 600113, Tamil Nadu, India
关键词
Biomass; Nitrogen-doped porous carbons; Oxygen reduction reaction (ORR); Rotating disk electrode (RDE); Rotating ring- disk electrode (RRDE); HIGHLY EFFICIENT ELECTROCATALYSTS; DIMETHYLAMINE-BORANE; SURFACE MODIFICATION; CATALYTIC-ACTIVITY; ORGANIC FRAMEWORK; GRAPHENE OXIDE; NANOPARTICLES; DEHYDROGENATION; PERFORMANCE; BIOMASS;
D O I
10.1016/j.ijhydene.2019.08.044
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this present study, novel hierarchical nitrogen-doped porous carbon for use as a metal-free oxygen reduction reaction (ORR) electrocatalyst is derived from borassus flabellifer male inflorescences by calcining at 1000 degrees C in an inert atmosphere using metal hydroxides as activating agent and melamine as nitrogen doping agent. The BET surface areas of the lithium-ion (Li-ion), potassium-ion (K-ion) and calcium-ion (Ca-ion) activated carbon are observed to be 824.02, 810.88 and 602.88 m(2) g(-1) respectively. Another interesting fact is that the total surface energy calculated by wicking method (73.2 mJ/m(2)), is found to be higher for Li-ion activated carbons. Among the prepared nitrogen-doped porous carbon, Li-ion activated system, showed an outstanding performance in ORR reaction in alkaline medium, thanks to its high surface area and notable surface activity. An incontrovertible of note that ORR half-wave potential of Li-ion activated nitrogen-doped carbon (0.90 V) is relatively higher in comparison to the commercial 20 wt % Pt/C catalyst (0.86 V). Inspite of overwhelming performance, the ORR reaction followed the preferred 4- electron transfer mechanism involving in the direct reduction pathway in all activated carbons. The ORR performance is also noticeably better and comparable to the best results in the literature based on biomass derived carbon catalysts. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:25918 / 25929
页数:12
相关论文
共 50 条
  • [41] Metal-organic framework derived hierarchically porous nitrogen-doped carbon nanostructures as novel electrocatalyst for oxygen reduction reaction
    Fu, Shaofang
    Zhu, Chengzhou
    Zhou, Yazhou
    Yang, Guohai
    Jeon, Ju-Won
    Lemmon, John
    Du, Dan
    Nune, Satish K.
    Lin, Yuehe
    ELECTROCHIMICA ACTA, 2015, 178 : 287 - 293
  • [42] Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst
    Lee, Jeong Hee
    Jang, Jue-hyuk
    Kim, Jinsoo
    Yoo, Sung Jong
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2021, 97 : 466 - 475
  • [43] Nitrogen-Doped Porous Carbon Derived from Malachium Aquaticum Biomass as a Highly Efficient Electrocatalyst for Oxygen Reduction Reaction
    Huang, Hui
    Wei, Xianjun
    Gao, Shuyan
    ELECTROCHIMICA ACTA, 2016, 220 : 427 - 435
  • [44] Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versus active sites
    Qiao, M.
    Tang, C.
    He, G.
    Qiu, K.
    Binions, R.
    Parkin, I. P.
    Zhang, Q.
    Guo, Z.
    Titirici, M. M.
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (32) : 12658 - 12666
  • [45] Metal-free nitrogen-doped carbon nanoribbons as highly efficient electrocatalysts for oxygen reduction reaction
    Huang, Jinzhen
    Han, Jiecai
    Gao, Tangling
    Zhang, Xinghong
    Li, Jiajie
    Li, Zhenjiang
    Xu, Ping
    Song, Bo
    CARBON, 2017, 124 : 34 - 41
  • [46] A nitrogen and boron co-doped metal-free carbon electrocatalyst for an efficient oxygen reduction reaction
    Zhou, Yunjie
    Sun, Yue
    Wang, Huibo
    Zhu, Cheng
    Gao, Jin
    Wu, Dan
    Huang, Hui
    Liu, Yang
    Kang, Zhenhui
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (11): : 2985 - 2991
  • [47] Metal-Free Nitrogen-Doped Carbon Foam Electrocatalysts for the Oxygen Reduction Reaction in Acid Solution
    Liu, J.
    Yu, S.
    Daio, T.
    Ismail, M. S.
    Sasaki, K.
    Lyth, S. M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (09) : F1049 - F1054
  • [48] Ni/Cu Regulating Nitrogen-Doped Porous Carbon as Electrocatalyst for Oxygen Reduction Reaction
    Hu, Hao
    Liang, Jia-Hao
    Zu, Zhao-Yang
    Mi, Jian-Li
    Xiao, Bei-Bei
    Zhang, Peng
    CHEMISTRYSELECT, 2021, 6 (27): : 6949 - 6956
  • [49] Nanodiamond/nitrogen-doped graphene (core/shell) as an effective and stable metal-free electrocatalyst for oxygen reduction reaction
    Dong, Liang
    Zang, Jianbing
    Su, Jing
    Jia, Yingdan
    Wang, Yanhui
    Lu, Jing
    Xu, Xipeng
    ELECTROCHIMICA ACTA, 2015, 174 : 1017 - 1022
  • [50] Promising N, P Co-doped Porous Carbon Materials as Metal-Free Electrocatalyst for Oxygen Reduction Reaction in Alkaline Medium
    Barman, Jayshree
    Deka, Namrata
    Rudra, Siddheswar
    Dutta, Gitish K.
    CHEMISTRYSELECT, 2022, 7 (28):