Regionalization of the SWAT+ model for projecting climate change impacts on sediment yield: An application in the Nile basin

被引:13
|
作者
Nkwasa, Albert [1 ]
Chawanda, Celray James [1 ]
van Griensven, Ann [1 ,2 ]
机构
[1] Vrije Univ Brussel VUB, Hydrol & Hydraul Engn Dept, B-1050 Brussels, Belgium
[2] IHE Delft Inst Water Educ, Water Sci & Engn Dept, NL-2611 AX Delft, Netherlands
基金
欧盟地平线“2020”; 比利时弗兰德研究基金会;
关键词
Soil erosion; Sediment yield; SWAT+; Regional modeling; Climate change; Nile basin; PREDICTING SOIL-EROSION; COVER-MANAGEMENT FACTOR; RIVER-BASIN; LAND-USE; SPATIAL-RESOLUTION; SURFACE RUNOFF; STREAM-FLOW; SCALE; WATER; DEM;
D O I
10.1016/j.ejrh.2022.101152
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Study region: Nile basin. Study focus: Several studies have shown a relationship between climate change and changes in sediment yield. However, there are limited modeling applications that study this relationship at regional scales mainly due to data availability and computational cost. This study proposes a methodological framework using the SWAT+ model to predict and project sediment yield at a regional scale in data-scarce regions using global datasets. We implement a framework that (a) incorporates topographic factors from high/medium resolution DEMs (b) incorporates crop phenology data (c) introduces an areal threshold to linearize sediment yield in large model units and (d) apply a hydrological mass balance calibration. We test this methodology in the Nile Basin using a model application with (revised) and without (default) the framework under historical and future climate projections. New hydrological insights for the region: Results show improved sediment yield estimates in the revised model, both in absolute values and spatial distribution when compared to measured and reported estimates. The contemporary long term (1989 - 2019) annual mean sediment yield in the revised model was 1.79 t ha-1 yr(- 1) and projected to increase by 61 % (44 % more than the default estimates) in te future period (2071 - 2100), with the greatest sediment yield increase in the eastern part of the basin. Thus, the proposed framework improves and influences modeled and predicted sediment yield respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Impacts of climate change on water balance components of Guder Catchment, Upper Abbay Basin, Ethiopia: SWAT model
    Tewekel Melese Gemechu
    Sustainable Water Resources Management, 2022, 8
  • [32] Land Use and Climate Change Impacts on Streamflow Using SWAT Model, Middle Awash Sub Basin, Ethiopia
    Diress Yigezu Tenagashaw
    Mekuanent Muluneh
    Girum Metaferia
    Yitbarek Andualem Mekonnen
    Water Conservation Science and Engineering, 2022, 7 : 183 - 196
  • [33] Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model
    Li, Chaoyue
    Fang, Haiyan
    CATENA, 2021, 201
  • [34] CLIMATE CHANGE ADAPTATION STRATEGIES IN THE BHAVANI BASIN USING THE SWAT MODEL
    Lakshmanan, A.
    Geethalakshmi, V.
    Rajalakshmi, D.
    Bhuvaneswari, K.
    Srinivasan, R.
    Sridhar, G.
    Sekhar, N. U.
    Annamalai, H.
    APPLIED ENGINEERING IN AGRICULTURE, 2011, 27 (06) : 887 - 893
  • [35] Climate Change Impacts on the Sediment Load for the Nogoa Catchment of the Fitzroy Basin
    Cobon, D. H.
    Toombs, N. R.
    Zhang, X.
    MODSIM 2007: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: LAND, WATER AND ENVIRONMENTAL MANAGEMENT: INTEGRATED SYSTEMS FOR SUSTAINABILITY, 2007, : 853 - 859
  • [36] Future climate change and impacts on water resources in the Upper Blue Nile basin
    Takele, Gebiyaw Sitotaw
    Gebre, Geremew Sahilu
    Gebremariam, Azage Gebreyohannes
    Engida, Agizew Nigussie
    JOURNAL OF WATER AND CLIMATE CHANGE, 2022, 13 (02) : 908 - 925
  • [37] ANALYSIS OF CLIMATE CHANGE IMPACTS ON RUNOFF AND SEDIMENT YIELD IN CENTRAL TAIWAN
    Tfwala, Samkele S.
    Chen, Ching-Nuo
    Wang, Yu-Min
    PROCEEDINGS OF THE 36TH IAHR WORLD CONGRESS: DELTAS OF THE FUTURE AND WHAT HAPPENS UPSTREAM, 2015, : 2190 - 2197
  • [38] Impact of Climate Change on sediment yield from the Upper Plata Basin
    Kazimierski, Leandro David
    Irigoyen, Martin
    Re, Mariano
    Menendez, Angel Nicolas
    Spalletti, Pablo
    Brea, Jose Daniel
    INTERNATIONAL JOURNAL OF RIVER BASIN MANAGEMENT, 2013, 11 (04) : 411 - 421
  • [39] Assessing the impacts of land cover and climate on runoff and sediment yield of a river basin
    Sinha, Rakesh Kumar
    Eldho, T. I.
    Subimal, Ghosh
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2020, 65 (12): : 2097 - 2115
  • [40] Climate Change Impacts on Flow, Sediment and Nutrient Export in a Great Lakes Watershed Using SWAT
    Verma, Siddhartha
    Bhattarai, Rabin
    Bosch, Nathan S.
    Cooke, Richard C.
    Kalita, Prasanta K.
    Markus, Momcilo
    CLEAN-SOIL AIR WATER, 2015, 43 (11) : 1464 - 1474